关注
Ian McBrearty
Ian McBrearty
Department of Geophysics, Stanford University
在 stanford.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
Pairwise Association of Seismic Arrivals with Convolutional Neural Networks
IW McBrearty, AA Delorey, PA Johnson
Seismological Research Letters, 2019
772019
Earthquake phase association using a Bayesian Gaussian mixture model
W Zhu, IW McBrearty, SM Mousavi, WL Ellsworth, GC Beroza
Journal of Geophysical Research: Solid Earth 127 (5), e2021JB023249, 2022
702022
Probing slow earthquakes with deep learning
B Rouet‐Leduc, C Hulbert, IW McBrearty, PA Johnson
Geophysical research letters 47 (4), e2019GL085870, 2020
532020
Earthquake arrival association with backprojection and graph theory
IW McBrearty, J Gomberg, AA Delorey, PA Johnson
Bulletin of the Seismological Society of America 109 (6), 2510-2531, 2019
332019
Earthquake phase association with graph neural networks
IW McBrearty, GC Beroza
Bulletin of the Seismological Society of America, 2023
282023
The Spatio‐temporal Evolution of Granular Microslip Precursors to Laboratory Earthquakes
DT Trugman, IW McBrearty, DC Bolton, RA Guyer, C Marone, PA Johnson
Geophysical Research Letters, e2020GL088404, 2020
222020
Basal seismicity of the Northeast Greenland Ice Stream
IW McBrearty, LK Zoet, S Anandakrishnan
Journal of Glaciology, 1-17, 2020
192020
Earthquake location and magnitude estimation with graph neural networks
IW McBrearty, GC Beroza
2022 IEEE International Conference on Image Processing (ICIP), 3858-3862, 2022
172022
Discovery of a meta-stable Al–Sm phase with unknown stoichiometry using a genetic algorithm
F Zhang, I McBrearty, RT Ott, E Park, MI Mendelev, MJ Kramer, CZ Wang, ...
Scripta Materialia 81, 32-35, 2014
162014
Investigating the influence of earthquake source complexity on back-projection images using convolutional neural networks
M Corradini, IW McBrearty, DT Trugman, C Satriano, PA Johnson, ...
Geophysical Journal International 229 (3), 1824-1839, 2022
22022
Quakeflow: A scalable deep-learning-based earthquake monitoring workflow with cloud computing
W Zhu, AB Hou, R Yang, A Datta, SM Mousavi, M Zhang, Y Park, ...
AGU Fall Meeting Abstracts 2021, IN21A-07, 2021
12021
High-Frequency Radiation and Earthquake Rupture Complexities: From Back Projection to a Machine Learning Approach.
M Corradini, I McBrearty, BPG Rouet-Leduc, C Hulbert, C Satriano, ...
Geophysical Research Abstracts 21, 2019
12019
Patterns in seismic energy and earthquake hazard in Northern Chile
C Hulbert, B Rouet-Leduc, IW McBrearty, PA Johnson
AGU Fall Meeting Abstracts 2018, T43E-0456, 2018
12018
Deep Learning Forecasts Caldera Collapse Events at Kilauea Volcano
IW McBrearty, P Segall
arXiv preprint arXiv:2404.19351, 2024
2024
Exploring Mayotte’s magmatic plumbing system using the variety and geometry of its seismicity
L Retailleau, JM Saurel, IW McBrearty, GC Beroza, G Farge, A Lomax, ...
EGU24, 2024
2024
Implementation of machine learning approaches to monitor pre-eruptive swarms at Piton de la Fournaise volcano
M Menager, Z Duputel, L Retailleau, V Ferrazzini, I McBrearty
EGU24, 2024
2024
Benchmarking seismic phase associators: Insights from synthetic scenarios
JAP Huerta, J Münchmeyer, I McBrearty, C Sippl
EGU24, 2024
2024
Global Earthquake Phase Association with Graph Neural Networks
IW McBrearty, W Yeck, GC Beroza
AGU23, 2023
2023
A Graph Neural Network Based Elastic Deformation Emulator for Arbitrarily Complex Magmatic Reservoirs
T Wang, IW McBrearty, P Segall
AGU23, 2023
2023
Machine Learning Methods of Association Applied to Dense Nodal Arrays
C Pennington, IW McBrearty, Q Kong, WR Walter
AGU23, 2023
2023
系统目前无法执行此操作,请稍后再试。
文章 1–20