Lyndon+ Christoffel= digitally convex S Brlek, JO Lachaud, X Provençal, C Reutenauer Pattern Recognition 42 (10), 2239-2246, 2009 | 70 | 2009 |
On the tiling by translation problem S Brlek, X Provençal, JM Fédou Discrete Applied Mathematics 157 (3), 464-475, 2009 | 52 | 2009 |
Two linear-time algorithms for computing the minimum length polygon of a digital contour X Provençal, JO Lachaud Discrete Geometry for Computer Imagery: 15th IAPR International Conference …, 2009 | 29 | 2009 |
Combinatoire des mots, géométrie discrete et pavages X Provençal Université du Québec à Montréal, 2008 | 27 | 2008 |
A linear time and space algorithm for detecting path intersection in Zd S Brlek, M Koskas, X Provençal Theoretical Computer Science 412 (36), 4841-4850, 2011 | 17 | 2011 |
An output-sensitive algorithm to compute the normal vector of a digital plane JO Lachaud, X Provençal, T Roussillon Theoretical Computer Science 624, 73-88, 2016 | 16 | 2016 |
An optimal algorithm for detecting pseudo-squares S Brlek, X Provençal Discrete Geometry for Computer Imagery: 13th International Conference, DGCI …, 2006 | 16 | 2006 |
Critical connectedness of thin arithmetical discrete planes V Berthé, D Jamet, T Jolivet, X Provençal Discrete Geometry for Computer Imagery: 17th IAPR International Conference …, 2013 | 15 | 2013 |
Palindromic complexity of trees S Brlek, N Lafrenière, X Provençal International Conference on Developments in Language Theory, 155-166, 2015 | 14 | 2015 |
A linear time and space algorithm for detecting path intersection S Brlek, M Koskas, X Provençal Discrete Geometry for Computer Imagery: 15th IAPR International Conference …, 2009 | 12 | 2009 |
Combinatorial view of digital convexity S Brlek, JO Lachaud, X Provençal Discrete Geometry for Computer Imagery: 14th IAPR International Conference …, 2008 | 12 | 2008 |
Two plane-probing algorithms for the computation of the normal vector to a digital plane JO Lachaud, X Provençal, T Roussillon Journal of Mathematical Imaging and Vision 59 (1), 23-39, 2017 | 10 | 2017 |
Computation of the normal vector to a digital plane by sampling significant points JO Lachaud, X Provençal, T Roussillon International Conference on Discrete Geometry for Computer Imagery, 194-205, 2016 | 10 | 2016 |
Facet connectedness of discrete hyperplanes with zero intercept: the general case E Domenjoud, X Provençal, L Vuillon Discrete Geometry for Computer Imagery: 18th IAPR International Conference …, 2014 | 10 | 2014 |
Fully Subtractive Algorithm, Tribonacci numeration and connectedness of discrete planes (Numeration and Substitution 2012) V Berthé, É Domenjoud, D Jamet, X Provençal 数理解析研究所講究録別冊 46, 159-174, 2014 | 9 | 2014 |
Patterns in smooth tilings A Bergeron-Brlek, S Brlek, A Lacasse, X Provençal Proc. WORDS 3, 10-13, 2003 | 8 | 2003 |
A study of Jacobi–Perron boundary words for the generation of discrete planes V Berthé, A Lacasse, G Paquin, X Provençal Theoretical Computer Science 502, 118-142, 2013 | 7 | 2013 |
Two linear-time algorithms for computing the minimum length polygon of a digital contour JO Lachaud, X Provençal Discrete applied mathematics 159 (18), 2229-2250, 2011 | 7 | 2011 |
Minimal non-convex words X Provençal Theoretical computer science 412 (27), 3002-3009, 2011 | 7 | 2011 |
On the problem of deciding if a polyomino tiles the plane by translation. S Brlek, X Provençal Stringology, 65-76, 2006 | 6 | 2006 |