Arac/XylS family of transcriptional regulators MT Gallegos, R Schleif, A Bairoch, K Hofmann, JL Ramos Microbiology and Molecular Biology Reviews 61 (4), 393-410, 1997 | 989 | 1997 |
Practical methods in molecular biology RF Schleif, PC Wensink Springer Science & Business Media, 2012 | 685 | 2012 |
DNA looping R Schleif Annual review of biochemistry 61 (1), 199-223, 1992 | 654 | 1992 |
An operator at-280 base pairs that is required for repression of araBAD operon promoter: addition of DNA helical turns between the operator and promoter cyclically hinders … TM Dunn, S Hahn, S Ogden, RF Schleif Proceedings of the National Academy of Sciences 81 (16), 5017-5020, 1984 | 519 | 1984 |
Regulation of the L-arabinose operon of Escherichia coli R Schleif Trends in genetics 16 (12), 559-565, 2000 | 358 | 2000 |
DNA looping and unlooping by AraC protein RB Lobell, RF Schleif Science 250 (4980), 528-532, 1990 | 337 | 1990 |
AraC protein, regulation of the l-arabinose operon in Escherichia coli, and the light switch mechanism of AraC action R Schleif FEMS microbiology reviews 34 (5), 779-796, 2010 | 317 | 2010 |
DNA binding by proteins R Schleif Science 241 (4870), 1182-1187, 1988 | 305 | 1988 |
Structural basis for ligand-regulated oligomerization of AraC SM Soisson, B MacDougall-Shackleton, R Schleif, C Wolberger Science 276 (5311), 421-425, 1997 | 271 | 1997 |
Size fractionation of double-stranded DNA by precipitation with polyethylene glycol JT Lis, R Schleif Nucleic acids research 2 (3), 383-390, 1975 | 268 | 1975 |
A dimer of AraC protein contacts three adjacent major groove regions of the araI DNA site. W Hendrickson, R Schleif Proceedings of the National Academy of Sciences 82 (10), 3129-3133, 1985 | 258 | 1985 |
The Escherichia coli L-arabinose operon: binding sites of the regulatory proteins and a mechanism of positive and negative regulation. S Ogden, D Haggerty, CM Stoner, D Kolodrubetz, R Schleif Proceedings of the National Academy of Sciences 77 (6), 3346-3350, 1980 | 248 | 1980 |
The DNA loop model for ara repression: AraC protein occupies the proposed loop sites in vivo and repression-negative mutations lie in these same sites. K Martin, L Huo, RF Schleif Proceedings of the National Academy of Sciences 83 (11), 3654-3658, 1986 | 222 | 1986 |
Missing contact probing of DNA-protein interactions. A Brunelle, RF Schleif Proceedings of the National Academy of Sciences 84 (19), 6673-6676, 1987 | 214 | 1987 |
Arabinose C Protein: Regulation of the Arabinose Operon in vitro J Greenblatt, R Schleif Nature New Biology 233 (40), 166-170, 1971 | 214 | 1971 |
Regulation of the Escherichia coli L-arabinose operon studied by gel electrophoresis DNA binding assay W Hendrickson, RF Schleif Journal of molecular biology 178 (3), 611-628, 1984 | 190 | 1984 |
Functional domains of the AraC protein. SA Bustos, RF Schleif Proceedings of the National Academy of Sciences 90 (12), 5638-5642, 1993 | 189 | 1993 |
Control of production of ribosomal protein R Schleif Journal of molecular biology 27 (1), 41-55, 1967 | 187 | 1967 |
A regulatory cascade in the induction of rhaBAD SM Egan, RF Schleif Journal of molecular biology 234 (1), 87-98, 1993 | 175 | 1993 |
In vivo DNA loops in araCBAD: size limits and helical repeat. DH Lee, RF Schleif Proceedings of the National Academy of Sciences 86 (2), 476-480, 1989 | 171 | 1989 |