Introduction to geometric probability DA Klain, GC Rota Cambridge University Press, 1997 | 822 | 1997 |
A short proof of Hadwiger's characterization theorem DA Klain Mathematika 42 (2), 329-339, 1995 | 190 | 1995 |
Star valuations and dual mixed volumes DA Klain advances in mathematics 121 (1), 80-101, 1996 | 114 | 1996 |
Even valuations on convex bodies D Klain Transactions of the American Mathematical Society 352 (1), 71-93, 2000 | 104 | 2000 |
Invariant valuations on star-shaped sets DA Klain advances in mathematics 125 (1), 95-113, 1997 | 92 | 1997 |
The Minkowski problem for polytopes DA Klain Advances in Mathematics 185 (2), 270-288, 2004 | 75 | 2004 |
A continuous analogue of Sperner's theorem DA Klain, GC Rota Communications on Pure and Applied Mathematics: A Journal Issued by the …, 1997 | 36 | 1997 |
Steiner symmetrization using a finite set of directions DA Klain Advances in Applied Mathematics 48 (2), 340-353, 2012 | 27 | 2012 |
An intuitive derivation of heron's formula DA Klain The American Mathematical Monthly 111 (8), 709-712, 2004 | 27 | 2004 |
An Euler relation for valuations on polytopes DA Klain Advances in Mathematics 147 (1), 1-34, 1999 | 25 | 1999 |
A countable set of directions is sufficient for Steiner symmetrization G Bianchi, DA Klain, E Lutwak, D Yang, G Zhang arXiv preprint arXiv:1105.0400, 2011 | 24 | 2011 |
Bonnesen-type inequalities for surfaces of constant curvature DA Klain Advances in Applied Mathematics 39 (2), 143-154, 2007 | 24 | 2007 |
Dehn-sommerville relations for triangulated manifolds D Klain Unpublished manuscript available at http://faculty. uml. edu/dklain/ds. pdf, 2002 | 14 | 2002 |
On the equality conditions of the Brunn-Minkowski theorem D Klain Proceedings of the American Mathematical Society 139 (10), 3719-3726, 2011 | 13 | 2011 |
Angles as probabilities DV Feldman, DA Klain The American Mathematical Monthly 116 (8), 732-735, 2009 | 12 | 2009 |
An error estimate for the isoperimetric deficit DA Klain Illinois Journal of Mathematics 49 (3), 981-992, 2005 | 10 | 2005 |
Covering shadows with a smaller volume DA Klain Advances in Mathematics 224 (2), 601-619, 2010 | 9 | 2010 |
Star measures and dual mixed volumes DA Klain Massachusetts Institute of Technology, 1994 | 8 | 1994 |
Kinematic formulas for finite lattices DA Klain Annals of Combinatorics 1 (1), 353-366, 1997 | 7 | 1997 |
If you can hide behind it, can you hide inside it? D Klain Transactions of the American Mathematical Society 363 (9), 4585-4601, 2011 | 6 | 2011 |