Deep q-learning from demonstrations T Hester, M Vecerik, O Pietquin, M Lanctot, T Schaul, B Piot, D Horgan, ... Proceedings of the AAAI conference on artificial intelligence 32 (1), 2018 | 1200 | 2018 |
Leveraging demonstrations for deep reinforcement learning on robotics problems with sparse rewards M Vecerik, T Hester, J Scholz, F Wang, O Pietquin, B Piot, N Heess, ... arXiv preprint arXiv:1707.08817, 2017 | 769 | 2017 |
Challenges of real-world reinforcement learning G Dulac-Arnold, D Mankowitz, T Hester arXiv preprint arXiv:1904.12901, 2019 | 625 | 2019 |
Safe exploration in continuous action spaces G Dalal, K Dvijotham, M Vecerik, T Hester, C Paduraru, Y Tassa arXiv preprint arXiv:1801.08757, 2018 | 471 | 2018 |
Challenges of real-world reinforcement learning: definitions, benchmarks and analysis G Dulac-Arnold, N Levine, DJ Mankowitz, J Li, C Paduraru, S Gowal, ... Machine Learning 110 (9), 2419-2468, 2021 | 394 | 2021 |
Eta prediction with graph neural networks in google maps A Derrow-Pinion, J She, D Wong, O Lange, T Hester, L Perez, ... Proceedings of the 30th ACM International Conference on Information …, 2021 | 219 | 2021 |
Methods and apparatus for using smart environment devices via application program interfaces I Karp, L Stesin, C Pi-Sunyer, MA McBride, A Dubman, J Lyons, SW Kortz, ... US Patent 10,638,292, 2020 | 219 | 2020 |
A novel approach to monitor rehabilitation outcomes in stroke survivors using wearable technology S Patel, R Hughes, T Hester, J Stein, M Akay, JG Dy, P Bonato Proceedings of the IEEE 98 (3), 450-461, 2010 | 212 | 2010 |
Learned overrides for home security MR Malhotra, S Le Guen, JA Boyd, JT Lee, T Hester US Patent 9,520,049, 2016 | 182 | 2016 |
Texplore: real-time sample-efficient reinforcement learning for robots T Hester, P Stone Machine learning 90, 385-429, 2013 | 179 | 2013 |
Learning from demonstrations for real world reinforcement learning T Hester, M Vecerik, O Pietquin, M Lanctot, T Schaul, B Piot, A Sendonaris, ... arXiv preprint arXiv:1704.03732, 2017 | 178 | 2017 |
Intelligent configuration of a smart environment based on arrival time PP Reddy, M Malhotra, EJ Fisher, T Hester, MA McBride, Y Matsuoka US Patent App. 14/531,805, 2015 | 163 | 2015 |
Generalized model learning for reinforcement learning on a humanoid robot T Hester, M Quinlan, P Stone 2010 IEEE International Conference on Robotics and Automation, 2369-2374, 2010 | 147 | 2010 |
Observe and look further: Achieving consistent performance on atari T Pohlen, B Piot, T Hester, MG Azar, D Horgan, D Budden, G Barth-Maron, ... arXiv preprint arXiv:1805.11593, 2018 | 136 | 2018 |
Using wearable sensors to measure motor abilities following stroke T Hester, R Hughes, DM Sherrill, B Knorr, M Akay, J Stein, P Bonato International Workshop on Wearable and Implantable Body Sensor Networks (BSN …, 2006 | 131 | 2006 |
An empirical investigation of the challenges of real-world reinforcement learning G Dulac-Arnold, N Levine, DJ Mankowitz, J Li, C Paduraru, S Gowal, ... arXiv preprint arXiv:2003.11881, 2020 | 121 | 2020 |
A practical approach to insertion with variable socket position using deep reinforcement learning M Vecerik, O Sushkov, D Barker, T Rothörl, T Hester, J Scholz 2019 international conference on robotics and automation (ICRA), 754-760, 2019 | 118 | 2019 |
Robust reinforcement learning for continuous control with model misspecification DJ Mankowitz, N Levine, R Jeong, Y Shi, J Kay, A Abdolmaleki, ... arXiv preprint arXiv:1906.07516, 2019 | 116 | 2019 |
The utility of temporal abstraction in reinforcement learning. NK Jong, T Hester, P Stone AAMAS (1), 299-306, 2008 | 107 | 2008 |
Intrinsically motivated model learning for developing curious robots T Hester, P Stone Artificial Intelligence 247, 170-186, 2017 | 105 | 2017 |