On modified Runge–Kutta trees and methods C Tsitouras, IT Famelis, TE Simos Computers & Mathematics with Applications 62 (4), 2101-2111, 2011 | 164 | 2011 |
Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions TE Simos, IT Famelis, C Tsitouras Numerical Algorithms 34, 27-40, 2003 | 137 | 2003 |
Runge–Kutta methods for fuzzy differential equations SC Palligkinis, G Papageorgiou, IT Famelis Applied mathematics and computation 209 (1), 97-105, 2009 | 111 | 2009 |
Phase-fitted Runge–Kutta pairs of orders 8 (7) C Tsitouras, IT Famelis, TE Simos Journal of Computational and Applied Mathematics 321, 226-231, 2017 | 90 | 2017 |
Explicit Numerov type methods with constant coefficients: a review TE Simos, C Tsitouras, IT Famelis APPLIED AND COMPUTATIONAL MATHEMATICS 16 (2), 89-113, 2017 | 87 | 2017 |
A discrete Adomian decomposition method for discrete nonlinear Schrödinger equations A Bratsos, M Ehrhardt, IT Famelis Applied mathematics and computation 197 (1), 190-205, 2008 | 64 | 2008 |
Neural network solution of pantograph type differential equations CC Hou, TE Simos, IT Famelis Mathematical Methods in the Applied Sciences 43 (6), 3369-3374, 2020 | 62 | 2020 |
Neural network solution of single-delay differential equations J Fang, C Liu, TE Simos, IT Famelis Mediterranean Journal of Mathematics 17, 1-15, 2020 | 52 | 2020 |
Symbolic derivation of Runge–Kutta order conditions IT Famelis, SN Papakostas, C Tsitouras Journal of Symbolic Computation 37 (3), 311-327, 2004 | 49 | 2004 |
Symbolic derivation of Runge–Kutta–Nyström order conditions C Tsitouras, IT Famelis Journal of mathematical chemistry 46 (3), 896-912, 2009 | 43 | 2009 |
A P-stable singly diagonally implicit Runge–Kutta–Nyström method G Papageorgiou, IT Famelis, C Tsitouras Numerical Algorithms 17, 345-353, 1998 | 42 | 1998 |
Explicit Numerov type methods for second order IVPs with oscillating solutions G Papageorgiou, C Tsitouras, I TH. FAMELIS International Journal of Modern Physics C 12 (05), 657-666, 2001 | 36 | 2001 |
Symbolic derivation of order conditions for hybrid Numerov-type methods solving y ″= f (x, y) IT Famelis, C Tsitouras Journal of computational and applied mathematics 218 (2), 543-555, 2008 | 32 | 2008 |
Phase-fitted Runge–Kutta pairs of orders 8 (7 IT Famelis, TE Simos Journal of Computational and Applied Mathematics 321, 226-231, 2017 | 22 | 2017 |
A highly accurate differential evolution–particle swarm optimization algorithm for the construction of initial value problem solvers I Th. Famelis, A Alexandridis, C Tsitouras Engineering Optimization 50 (8), 1364-1379, 2018 | 19 | 2018 |
Parameterized neural network training for the solution of a class of stiff initial value systems IT Famelis, V Kaloutsa Neural Computing and Applications 33 (8), 3363-3370, 2021 | 12 | 2021 |
Equilibrium states of adaptive algorithms for delay differential equations DJ Higham, IT Famelis Journal of computational and applied mathematics 58 (2), 151-169, 1995 | 12 | 1995 |
Classical and quasi-Newton methods for a meteorological parameters prediction boundary value problem I Famelis, G Galanis, M Ehrhardt, D Triantafyllou Applied Mathematics & Information Sciences 8 (6), 2683, 2014 | 11 | 2014 |
Using neural networks for the derivation of Runge–Kutta–Nyström pairs for integration of orbits C Tsitouras, IT Famelis New Astronomy 17 (4), 469-473, 2012 | 11 | 2012 |
On using explicit Runge–Kutta–Nyström methods for the treatment of retarded differential equations with periodic solutions G Papageorgiou, IT Famelis Applied mathematics and computation 102 (1), 63-76, 1999 | 10 | 1999 |