A primal–dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms L Condat Journal of optimization theory and applications 158 (2), 460-479, 2013 | 988 | 2013 |
Fast projection onto the simplex and the l1 ball L Condat Mathematical Programming 158 (1), 575-585, 2016 | 482 | 2016 |
A direct algorithm for 1-D total variation denoising L Condat IEEE Signal Processing Letters 20 (11), 1054-1057, 2013 | 403 | 2013 |
Indusion: Fusion of multispectral and panchromatic images using the induction scaling technique MM Khan, J Chanussot, L Condat, A Montanvert IEEE Geoscience and Remote Sensing Letters 5 (1), 98-102, 2008 | 237 | 2008 |
Discrete total variation: New definition and minimization L Condat SIAM Journal on Imaging Sciences 10 (3), 1258-1290, 2017 | 162 | 2017 |
A new pansharpening method based on spatial and spectral sparsity priors X He, L Condat, JM Bioucas-Dias, J Chanussot, J Xia IEEE Transactions on Image Processing 23 (9), 4160-4174, 2014 | 158 | 2014 |
A generic proximal algorithm for convex optimization—application to total variation minimization L Condat IEEE Signal Processing Letters 21 (8), 985-989, 2014 | 135 | 2014 |
A forward-backward view of some primal-dual optimization methods in image recovery PL Combettes, L Condat, JC Pesquet, BC Vũ 2014 IEEE International Conference on Image Processing (ICIP), 4141-4145, 2014 | 120 | 2014 |
From Local SGD to local fixed-point methods for federated learning G Malinovskiy, D Kovalev, E Gasanov, L Condat, P Richtárik International Conference on Machine Learning (ICML), PMLR 119, 6692-6701, 2020 | 116 | 2020 |
Proximal splitting algorithms for convex optimization: A tour of recent advances, with new twists L Condat, D Kitahara, A Contreras, A Hirabayashi SIAM Review 65 (2), 375-435, 2023 | 113* | 2023 |
Cadzow denoising upgraded: A new projection method for the recovery of Dirac pulses from noisy linear measurements L Condat, A Hirabayashi Sampling Theory in Signal and Image Processing 14 (1), 17-47, 2015 | 99 | 2015 |
Joint demosaicking and denoising by total variation minimization L Condat, S Mosaddegh 2012 19th IEEE International Conference on Image Processing (ICIP), 2781-2784, 2012 | 88 | 2012 |
Fusion of hyperspectral and panchromatic images using multiresolution analysis and nonlinear PCA band reduction GA Licciardi, MM Khan, J Chanussot, A Montanvert, L Condat, C Jutten EURASIP Journal on Advances in Signal processing 2012, 1-17, 2012 | 79 | 2012 |
A generic variational approach for demosaicking from an arbitrary color filter array L Condat 2009 16th IEEE International Conference on Image Processing (ICIP), 1625-1628, 2009 | 69 | 2009 |
A new color filter array with optimal properties for noiseless and noisy color image acquisition L Condat IEEE Transactions on image processing 20 (8), 2200-2210, 2011 | 55 | 2011 |
Beyond interpolation: Optimal reconstruction by quasi-interpolation L Condat, T Blu, M Unser 2005 IEEE International Conference on Image Processing (ICIP) 1, I-33, 2005 | 53 | 2005 |
Optimal gradient compression for distributed and federated learning A Albasyoni, M Safaryan, L Condat, P Richtárik arXiv preprint arXiv:2010.03246, 2020 | 52 | 2020 |
Quasi-interpolating spline models for hexagonally-sampled data L Condat, D Van De Ville IEEE Transactions on Image Processing 16 (5), 1195-1206, 2007 | 52 | 2007 |
A simple, fast and efficient approach to denoisaicking: Joint demosaicking and denoising L Condat 2010 IEEE International Conference on Image Processing (ICIP), 905-908, 2010 | 46 | 2010 |
Dualize, split, randomize: Toward fast nonsmooth optimization algorithms A Salim, L Condat, K Mishchenko, P Richtárik Journal of Optimization Theory and Applications 195 (1), 102-130, 2022 | 39 | 2022 |