受强制性开放获取政策约束的文章 - J. Austin Ellis了解详情
可在其他位置公开访问的文章:18 篇
Accelerating finite-temperature Kohn-Sham density functional theory with deep neural networks
JA Ellis, L Fiedler, GA Popoola, NA Modine, JA Stephens, AP Thompson, ...
Physical Review B 104 (3), 035120, 2021
强制性开放获取政策: US Department of Energy, Federal Ministry of Education and Research, Germany
Local improvement results for Anderson acceleration with inaccurate function evaluations
A Toth, JA Ellis, T Evans, S Hamilton, CT Kelley, R Pawlowski, S Slattery
SIAM Journal on Scientific Computing 39 (5), S47-S65, 2017
强制性开放获取政策: US National Science Foundation, US Department of Energy
Revealing power, energy and thermal dynamics of a 200pf pre-exascale supercomputer
W Shin, V Oles, AM Karimi, JA Ellis, F Wang
Proceedings of the International Conference for High Performance Computing …, 2021
强制性开放获取政策: US Department of Energy
Scalable inference for sparse deep neural networks using Kokkos kernels
JA Ellis, S Rajamanickam
2019 IEEE High Performance Extreme Computing Conference (HPEC), 1-7, 2019
强制性开放获取政策: US Department of Energy
Co-design center for exascale machine learning technologies (exalearn)
FJ Alexander, J Ang, JA Bilbrey, J Balewski, T Casey, R Chard, J Choi, ...
The International Journal of High Performance Computing Applications 35 (6 …, 2021
强制性开放获取政策: US Department of Energy
Optimization of processor allocation for domain decomposed Monte Carlo calculations
JA Ellis, TM Evans, SP Hamilton, CT Kelley, TM Pandya
Parallel Computing 87, 77-86, 2019
强制性开放获取政策: US National Science Foundation, US Department of Energy
ALO-NMF: Accelerated locality-optimized non-negative matrix factorization
GE Moon, JA Ellis, A Sukumaran-Rajam, S Parthasarathy, P Sadayappan
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge …, 2020
强制性开放获取政策: US National Science Foundation, US Department of Energy
Climbing the summit and pushing the frontier of mixed precision benchmarks at extreme scale
H Lu, M Matheson, V Oles, A Ellis, W Joubert, F Wang
SC22: International Conference for High Performance Computing, Networking …, 2022
强制性开放获取政策: US Department of Energy
Training-free hyperparameter optimization of neural networks for electronic structures in matter
L Fiedler, N Hoffmann, P Mohammed, GA Popoola, T Yovell, V Oles, ...
Machine Learning: Science and Technology 3 (4), 045008, 2022
强制性开放获取政策: US Department of Energy, Federal Ministry of Education and Research, Germany
ECP report: Update on proxy applications and vendor interactions
J Ang, C Sweeney, M Wolf, JA Ellis, S Ghosh, A Kagawa, Y Huang, ...
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2020
强制性开放获取政策: US Department of Energy
Hypothesis-agnostic network-based analysis of real-world data suggests ondansetron is associated with lower COVID-19 any cause mortality
GM Miller, JA Ellis, R Sarangarajan, A Parikh, LO Rodrigues, C Bruce, ...
Drugs-real world outcomes 9 (3), 359-375, 2022
强制性开放获取政策: US Department of Energy
Ondansetron use is associated with lower COVID-19 mortality in a Real-World Data network-based analysis
GM Miller, JA Ellis, R Sarangarajan, A Parikh, LO Rodrigues, C Bruce, ...
medRxiv, 2021.10. 05.21264578, 2021
强制性开放获取政策: US Department of Energy
A machine learning surrogate for density functional theory based on the local density of state.
N Modine, L Fiedler, D Vogel, A Thompson, A Ellis, J Stephens, ...
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2022
强制性开放获取政策: US Department of Energy
Finding Electronic Structure Machine Learning Surrogates without Training
L Fiedler, N Hoffmann, P Mohammed, GA Popoola, T Yovell, V Oles, ...
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2022
强制性开放获取政策: US Department of Energy, Federal Ministry of Education and Research, Germany
Accelerating Multiscale Materials Modeling with Machine Learning.
J Ellis
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2020
强制性开放获取政策: US Department of Energy
miniGAN: A Generative Adversarial Network proxy application WBS 2.2. 6.08 ECP-2.1. 3 (Q3 FY2020 Milestone Report)(V. 1.0)
JA Ellis
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2020
强制性开放获取政策: US Department of Energy
Scalable inference for sparse neural networks using Kokkos Kernels.
J Ellis, S Rajamanickam
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2019
强制性开放获取政策: US Department of Energy
Understanding the Machine Learning Needs of ECP Applications
JA Ellis, S Rajamanickam
Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2019
强制性开放获取政策: US Department of Energy
出版信息和资助信息由计算机程序自动确定