Real-time grasp detection using convolutional neural networks J Redmon, A Angelova 2015 IEEE international conference on robotics and automation (ICRA), 1316-1322, 2015 | 974 | 2015 |
Unsupervised learning of depth and ego-motion from monocular video using 3d geometric constraints R Mahjourian, M Wicke, A Angelova Proceedings of the IEEE conference on computer vision and pattern …, 2018 | 852 | 2018 |
Depth prediction without the sensors: Leveraging structure for unsupervised learning from monocular videos V Casser, S Pirk, R Mahjourian, A Angelova Proceedings of the AAAI conference on artificial intelligence 33 (01), 8001-8008, 2019 | 523 | 2019 |
Pali: A jointly-scaled multilingual language-image model X Chen, X Wang, S Changpinyo, AJ Piergiovanni, P Padlewski, D Salz, ... arXiv preprint arXiv:2209.06794, 2022 | 469 | 2022 |
Depth from videos in the wild: Unsupervised monocular depth learning from unknown cameras A Gordon, H Li, R Jonschkowski, A Angelova Proceedings of the IEEE/CVF international conference on computer vision …, 2019 | 422 | 2019 |
Real-time pedestrian detection with deep network cascades. A Angelova, A Krizhevsky, V Vanhoucke, AS Ogale, D Ferguson Bmvc 2, 4, 2015 | 315 | 2015 |
Computer vision on Mars L Matthies, M Maimone, A Johnson, Y Cheng, R Willson, C Villalpando, ... International Journal of Computer Vision 75, 67-92, 2007 | 288 | 2007 |
Efficient object detection and segmentation for fine-grained recognition A Angelova, S Zhu Proceedings of the IEEE conference on computer vision and pattern …, 2013 | 284 | 2013 |
Pruning training sets for learning of object categories A Angelova, Y Abu-Mostafam, P Perona 2005 IEEE Computer Society conference on computer vision and pattern …, 2005 | 210 | 2005 |
What matters in unsupervised optical flow R Jonschkowski, A Stone, JT Barron, A Gordon, K Konolige, A Angelova Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23 …, 2020 | 202 | 2020 |
Learning and prediction of slip from visual information A Angelova, L Matthies, D Helmick, P Perona Journal of Field Robotics 24 (3), 205-231, 2007 | 187 | 2007 |
Evolving losses for unsupervised video representation learning AJ Piergiovanni, A Angelova, MS Ryoo Proceedings of the IEEE/CVF conference on computer vision and pattern …, 2020 | 158 | 2020 |
Probabilistic object detection: Definition and evaluation D Hall, F Dayoub, J Skinner, H Zhang, D Miller, P Corke, G Carneiro, ... Proceedings of the IEEE/CVF Winter Conference on Applications of Computer …, 2020 | 143 | 2020 |
Terrain adaptive navigation for planetary rovers D Helmick, A Angelova, L Matthies Journal of Field Robotics 26 (4), 391-410, 2009 | 143 | 2009 |
Shapemask: Learning to segment novel objects by refining shape priors W Kuo, A Angelova, J Malik, TY Lin Proceedings of the IEEE/CVF international conference on computer vision …, 2019 | 141 | 2019 |
Pedestrian detection with a large-field-of-view deep network A Angelova, A Krizhevsky, V Vanhoucke 2015 IEEE international conference on robotics and automation (ICRA), 704-711, 2015 | 136 | 2015 |
Tokenlearner: Adaptive space-time tokenization for videos M Ryoo, AJ Piergiovanni, A Arnab, M Dehghani, A Angelova Advances in neural information processing systems 34, 12786-12797, 2021 | 132 | 2021 |
Unsupervised monocular depth learning in dynamic scenes H Li, A Gordon, H Zhao, V Casser, A Angelova Conference on Robot Learning, 1908-1917, 2021 | 132 | 2021 |
F-vlm: Open-vocabulary object detection upon frozen vision and language models W Kuo, Y Cui, X Gu, AJ Piergiovanni, A Angelova arXiv preprint arXiv:2209.15639, 2022 | 124 | 2022 |
Unsupervised monocular depth and ego-motion learning with structure and semantics V Casser, S Pirk, R Mahjourian, A Angelova Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2019 | 113 | 2019 |