关注
Johan Vertens
Johan Vertens
在 informatik.uni-freiburg.de 的电子邮件经过验证
标题
引用次数
引用次数
年份
Adapnet: Adaptive semantic segmentation in adverse environmental conditions
A Valada, J Vertens, A Dhall, W Burgard
2017 IEEE International Conference on Robotics and Automation (ICRA), 4644-4651, 2017
2552017
Smsnet: Semantic motion segmentation using deep convolutional neural networks
J Vertens, A Valada, W Burgard
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2017
882017
Long-term urban vehicle localization using pole landmarks extracted from 3-D lidar scans
A Schaefer, D Büscher, J Vertens, L Luft, W Burgard
2019 European Conference on Mobile Robots (ECMR), 1-7, 2019
822019
Heatnet: Bridging the day-night domain gap in semantic segmentation with thermal images
J Vertens, J Zürn, W Burgard
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2020
762020
Lane graph estimation for scene understanding in urban driving
J Zürn, J Vertens, W Burgard
IEEE Robotics and Automation Letters 6 (4), 8615-8622, 2021
292021
Long-term vehicle localization in urban environments based on pole landmarks extracted from 3-D lidar scans
A Schaefer, D Büscher, J Vertens, L Luft, W Burgard
Robotics and Autonomous Systems 136, 103709, 2021
292021
Measuring Respiration and Heart Rate using Two Acceleration Sensors on a Fully Embedded Platform.
J Vertens, F Fischer, C Heyde, F Hoeflinger, R Zhang, LM Reindl, ...
icSPORTS, 15-23, 2015
252015
Learning object placements for relational instructions by hallucinating scene representations
O Mees, A Emek, J Vertens, W Burgard
2020 IEEE International Conference on Robotics and Automation (ICRA), 94-100, 2020
242020
From plants to landmarks: Time-invariant plant localization that uses deep pose regression in agricultural fields
F Kraemer, A Schaefer, A Eitel, J Vertens, W Burgard
arXiv preprint arXiv:1709.04751, 2017
202017
A maximum likelihood approach to extract finite planes from 3-D laser scans
A Schaefer, J Vertens, D Büscher, W Burgard
2019 International Conference on Robotics and Automation (ICRA), 72-78, 2019
142019
Perspectives on deep multimodel robot learning
W Burgard, A Valada, N Radwan, T Naseer, J Zhang, J Vertens, O Mees, ...
Robotics Research: The 18th International Symposium ISRR, 17-24, 2020
112020
Heatnet: Bridging the day-night domain gap in semantic segmentation with thermal images. In 2020 IEEE
J Vertens, J Zürn, W Burgard
RSJ International Conference on Intelligent Robots and Systems (IROS), 8461-8468, 0
7
Improving Deep Dynamics Models for Autonomous Vehicles with Multimodal Latent Mapping of Surfaces
J Vertens, N Dorka, T Welschehold, M Thompson, W Burgard
2023 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2023
32023
Usegscene: Unsupervised learning of depth, optical flow and ego-motion with semantic guidance and coupled networks
J Vertens, W Burgard
arXiv preprint arXiv:2207.07469, 2022
22022
Realistic real-time simulation of RGB and depth sensors for dynamic scenarios using augmented image based rendering
J Vertens, W Burgard
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems …, 2022
12022
系统目前无法执行此操作,请稍后再试。
文章 1–15