Runge–Kutta pairs of order 5 (4) satisfying only the first column simplifying assumption C Tsitouras Computers & Mathematics with Applications 62 (2), 770-775, 2011 | 225 | 2011 |
On modified Runge–Kutta trees and methods C Tsitouras, IT Famelis, TE Simos Computers & Mathematics with Applications 62 (4), 2101-2111, 2011 | 162 | 2011 |
Zero dissipative, explicit Numerov-type methods for second order IVPs with oscillating solutions TE Simos, IT Famelis, C Tsitouras Numerical Algorithms 34, 27-40, 2003 | 136 | 2003 |
Optimized Runge–Kutta pairs for problems with oscillating solutions C Tsitouras, TE Simos Journal of computational and Applied Mathematics 147 (2), 397-409, 2002 | 100 | 2002 |
High Phase-Lag-Order Runge--Kutta and Nyström Pairs SN Papakostas, C Tsitouras SIAM Journal on Scientific Computing 21 (2), 747-763, 1999 | 99 | 1999 |
Phase-fitted Runge–Kutta pairs of orders 8 (7) C Tsitouras, IT Famelis, TE Simos Journal of Computational and Applied Mathematics 321, 226-231, 2017 | 90 | 2017 |
Evolutionary generation of high‐order, explicit, two‐step methods for second‐order linear IVPs TE Simos, C Tsitouras Mathematical Methods in the Applied Sciences 40 (18), 6276-6284, 2017 | 89 | 2017 |
Cheap error estimation for Runge--Kutta methods C Tsitouras, SN Papakostas SIAM Journal on Scientific Computing 20 (6), 2067-2088, 1999 | 86 | 1999 |
Explicit Numerov type methods with constant coefficients: a review TE Simos, C Tsitouras, IT Famelis APPLIED AND COMPUTATIONAL MATHEMATICS 16 (2), 89-113, 2017 | 85 | 2017 |
A new family of 7 stages, eighth‐order explicit Numerov‐type methods TE Simos, C Tsitouras Mathematical Methods in the Applied Sciences 40 (18), 7867-7878, 2017 | 72 | 2017 |
Trigonometric fitted, eighth‐order explicit Numerov‐type methods DB Berg, TE Simos, C Tsitouras Mathematical Methods in the Applied Sciences 41 (5), 1845-1854, 2018 | 61 | 2018 |
Explicit Numerov type methods with reduced number of stages C Tsitouras Computers & Mathematics with Applications 45 (1-3), 37-42, 2003 | 60 | 2003 |
A tenth order symplectic Runge–Kutta–Nyström method C Tsitouras Celestial Mechanics and Dynamical Astronomy 74, 223-230, 1999 | 57 | 1999 |
Fitted modifications of classical Runge‐Kutta pairs of orders 5 (4) TE Simos, C Tsitouras Mathematical Methods in the Applied Sciences 41 (12), 4549-4559, 2018 | 56 | 2018 |
Trigonometric-fitted explicit numerov-type method with vanishing phase-lag and its first and second derivatives C Tsitouras, TE Simos Mediterranean Journal of Mathematics 15 (4), 168, 2018 | 55 | 2018 |
On ninth order, explicit Numerov-type methods with constant coefficients C Tsitouras, TE Simos Mediterranean Journal of Mathematics 15, 1-17, 2018 | 54 | 2018 |
Explicit two-step methods for second-order linear IVPs C Tsitouras Computers & Mathematics with Applications 43 (8-9), 943-949, 2002 | 52 | 2002 |
Symbolic derivation of Runge–Kutta order conditions IT Famelis, SN Papakostas, C Tsitouras Journal of Symbolic Computation 37 (3), 311-327, 2004 | 49 | 2004 |
Linearized numerical schemes for the Boussinesq equation AG Bratsos, C Tsitouras, DG Natsis Applied Numerical Analysis & Computational Mathematics 2 (1), 34-53, 2005 | 47 | 2005 |
Optimized explicit Runge–Kutta pair of orders 9 (8) C Tsitouras Applied numerical mathematics 38 (1-2), 123-134, 2001 | 47 | 2001 |