Iterative regularization methods for nonlinear ill-posed problems B Kaltenbacher, A Neubauer, O Scherzer Walter de Gruyter, 2008 | 1016 | 2008 |
Regularization methods in Banach spaces T Schuster, B Kaltenbacher, B Hofmann, KS Kazimierski Walter de Gruyter, 2012 | 488 | 2012 |
A convergence rates result for Tikhonov regularization in Banach spaces with non-smooth operators B Hofmann, B Kaltenbacher, C Poeschl, O Scherzer Inverse Problems 23 (3), 987, 2007 | 441 | 2007 |
Wellposedness and exponential decay rates for the Moore-Gibson-Thompson equation arising in high intensity ultrasound B Kaltenbacher, I Lasiecka, R Marchand Control and Cybernetics 40 (4), 971-988, 2011 | 222 | 2011 |
Some Newton-type methods for the regularization of nonlinear ill-posed problems B Kaltenbacher Inverse Problems 13 (3), 729, 1997 | 219 | 1997 |
A modified and stable version of a perfectly matched layer technique for the 3-d second order wave equation in time domain with an application to aeroacoustics B Kaltenbacher, M Kaltenbacher, I Sim Journal of computational physics 235, 407-422, 2013 | 144 | 2013 |
Scalable parameter estimation for genome-scale biochemical reaction networks F Fröhlich, B Kaltenbacher, FJ Theis, J Hasenauer PLoS computational biology 13 (1), e1005331, 2017 | 143 | 2017 |
Well-posedness and exponential decay of the energy in the nonlinear Jordan–Moore–Gibson–Thompson equation arising in high intensity ultrasound B Kaltenbacher, I Lasiecka, MK Pospieszalska Mathematical Models and Methods in Applied Sciences 22 (11), 1250035, 2012 | 123 | 2012 |
Iterative methods for nonlinear ill-posed problems in Banach spaces: convergence and applications to parameter identification problems B Kaltenbacher, F Schöpfer, T Schuster Inverse Problems 25 (6), 065003, 2009 | 118 | 2009 |
Global existence and exponential decay rates for the Westervelt equation B Kaltenbacher, I Lasiecka Discrete and Continuous Dynamical Systems¿ Series S 2 (3), 503, 2009 | 95 | 2009 |
Mathematics of nonlinear acoustics B Kaltenbacher Evolution Equations and Control Theory 4 (4), 447-491, 2015 | 88 | 2015 |
FEM-based determination of real and complex elastic, dielectric, and piezoelectric moduli in piezoceramic materials T Lahmer, M Kaltenbacher, B Kaltenbacher, R Lerch, E Leder IEEE transactions on ultrasonics, ferroelectrics, and frequency control 55 …, 2008 | 86 | 2008 |
Regularizing Newton--Kaczmarz methods for nonlinear ill-posed problems M Burger, B Kaltenbacher SIAM Journal on Numerical Analysis 44 (1), 153-182, 2006 | 78 | 2006 |
Regularization by projection with a posteriori discretization level choice for linear and nonlinear ill-posed problems B Kaltenbacher Inverse Problems 16 (5), 1523, 2000 | 75 | 2000 |
A posteriori parameter choice strategies for some Newton type methods for the regularization of nonlinearill-posed problems B Kaltenbacher Numerische Mathematik 79, 501-528, 1998 | 74 | 1998 |
Convergence rates for the iteratively regularized Gauss–Newton method in Banach spaces B Kaltenbacher, B Hofmann Inverse Problems 26 (3), 035007, 2010 | 73 | 2010 |
Efficient modeling of ferroelectric behavior for the analysis of piezoceramic actuators T Hegewald, B Kaltenbacher, M Kaltenbacher, R Lerch Journal of Intelligent Material Systems and Structures 19 (10), 1117-1129, 2008 | 68 | 2008 |
Efficient computation of the Tikhonov regularization parameter by goal-oriented adaptive discretization A Griesbaum, B Kaltenbacher, B Vexler Inverse Problems 24 (2), 025025, 2008 | 63 | 2008 |
PDE based determination of piezoelectric material tensors B Kaltenbacher, T Lahmer, M Mohr, M Kaltenbacher European Journal of Applied Mathematics 17 (4), 383-416, 2006 | 59 | 2006 |
The Jordan–Moore–Gibson–Thompson equation: Well-posedness with quadratic gradient nonlinearity and singular limit for vanishing relaxation time B Kaltenbacher, V Nikolić Mathematical Models and Methods in Applied Sciences 29 (13), 2523-2556, 2019 | 58 | 2019 |