关注
SURYANARAYANA MADDU
SURYANARAYANA MADDU
Center for Computational Biology, Flatiron Institute; Harvard QBio
在 flatironinstitute.org 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Direct numerical simulation of coupled fluid flow and heat transfer for single particles and particle packings by a LBM-approach
H Kruggel-Emden, B Kravets, MK Suryanarayana, R Jasevicius
Powder Technology 294, 236-251, 2016
752016
Inverse Dirichlet weighting enables reliable training of physics informed neural networks
S Maddu, D Sturm, CL Müller, IF Sbalzarini
Machine Learning: Science and Technology 3 (1), 015026, 2022
572022
Stability selection enables robust learning of differential equations from limited noisy data
S Maddu, BL Cheeseman, IF Sbalzarini, CL Müller
Proceedings of the Royal Society A: Mathematical, Physical and Engineering …, 2022
45*2022
Learning physically consistent differential equation models from data using group sparsity
S Maddu, BL Cheeseman, CL Müller, IF Sbalzarini
Physical Review E 103 (4), 042310, 2021
202021
Lattice Boltzmann method for thin-liquid-film hydrodynamics
S Zitz, A Scagliarini, SM Kondaiah, AA Darhuber, J Harting
Phys. Rev. E, 0
18*
Adaptive weighting of Bayesian physics informed neural networks for multitask and multiscale forward and inverse problems
S Perez, S Maddu, IF Sbalzarini, P Poncet
Journal of Computational Physics 491, 112342, 2023
132023
STENCIL-NET for equation-free forecasting from data
S Maddu, D Sturm, BL Cheeseman, CL Müller, IF Sbalzarini
Scientific Reports 13, 12787, 2023
11*2023
Parallel discrete convolutions on adaptive particle representations of images
J Jonsson, BL Cheeseman, S Maddu, K Gonciarz, IF Sbalzarini
IEEE Transactions on Image Processing 31, 4197-4212, 2022
22022
Learning deterministic hydrodynamic equations from stochastic active particle dynamics
S Maddu, Q Vagne, IF Sbalzarini
2*
Learning fast, accurate, and stable closures of a kinetic theory of an active fluid
S Maddu, S Weady, MJ Shelley
Journal of Computational Physics 504, 112869, 2024
2024
Stochastic force inference via density estimation
V Chardès, S Maddu, MJ Shelley
NeurIPS 2023 AI for Science Workshop, 2023
2023
Learning locally dominant force balances in active particle systems
D Sturm, S Maddu, IF Sbalzarini
arXiv preprint arXiv:2307.14970, 2023
2023
Learning accurate closures of a kinetic theory of an active fluid
S Maddu, S Weady, M Shelley
Bulletin of the American Physical Society, 2023
2023
Data-driven modeling and simulation of spatiotemporal processes with a view toward applications in biology
S Maddu Kondaiah
Dissertation, Dresden, Technische Universität Dresden, 2021, 2021
2021
ENCODING KNOWLEDGE WITH GROUP SPARSITY FOR MODEL LEARNING FROM LIMITED AND NOISY BIOLOGICAL DATA
S Maddu, BL Cheeseman, CL Müller, IF Sbalzarini
Learning computable models from data
S Maddu, D Sturm, BL Cheeseman, CL Müller, IF Sbalzarini
14th World Congress on Computational Mechanics (WCCM), ECCOMAS Congress 2020, 0
A NEW LATTICE BOLTZMANN APPROACH TO THIN FILM HYDRODYNAMICS
S Zitz, A Scagliarini, S Maddu, AA Darhuber, J Harting
SWALBE: A lattice Boltzmann solver of the shallow water equations for thin liquid film flows
S Zitz, A Scagliarini, S Maddu, AA Darhuber, J Harting
Simulation of thin films using the shallow water lattice Boltzmann method: Implementation and Acceleration
S Maddu
RWTH Aachen, Ruhr Bochum, 0
系统目前无法执行此操作,请稍后再试。
文章 1–19