On the role of convexity in isoperimetry, spectral gap and concentration E Milman Inventiones mathematicae 177 (1), 1-43, 2009 | 246 | 2009 |
The globalization theorem for the curvature-dimension condition F Cavalletti, E Milman Inventiones mathematicae 226 (1), 1-137, 2021 | 186* | 2021 |
Interpolating thin-shell and sharp large-deviation estimates for lsotropic log-concave measures O Guédon, E Milman Geometric and Functional Analysis 21 (5), 1043-1068, 2011 | 143 | 2011 |
Centroid bodies and the logarithmic Laplace transform–a unified approach B Klartag, E Milman Journal of Functional Analysis 262 (1), 10-34, 2012 | 97 | 2012 |
Local -Brunn-Minkowski Inequalities for AV Kolesnikov, E Milman American Mathematical Society, 2022 | 92 | 2022 |
Sharp isoperimetric inequalities and model spaces for the curvature-dimension-diameter condition E Milman Journal of the European Mathematical Society 17 (5), 1041-1078, 2015 | 89 | 2015 |
Brascamp–Lieb-type inequalities on weighted Riemannian manifolds with boundary AV Kolesnikov, E Milman The Journal of Geometric Analysis 27, 1680-1702, 2017 | 76* | 2017 |
Isoperimetric and concentration inequalities: equivalence under curvature lower bound E Milman Duke Math. J. 154 (2), 207-239, 2010 | 70 | 2010 |
Beyond traditional curvature-dimension I: new model spaces for isoperimetric and concentration inequalities in negative dimension E Milman Transactions of the American Mathematical Society 369 (5), 3605-3637, 2017 | 69 | 2017 |
Generalized intersection bodies E Milman Journal of Functional Analysis 240 (2), 530-567, 2006 | 63 | 2006 |
Complemented Brunn–Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures E Milman, L Rotem Advances in Mathematics 262, 867-908, 2014 | 60 | 2014 |
Dual mixed volumes and the slicing problem E Milman Advances in Mathematics 207 (2), 566-598, 2006 | 59 | 2006 |
On the role of convexity in functional and isoperimetric inequalities E Milman Proceedings of the London Mathematical Society 99 (1), 32-66, 2009 | 57 | 2009 |
A generalization of Caffarelli’s contraction theorem via (reverse) heat flow YH Kim, E Milman Mathematische Annalen 354 (3), 827-862, 2012 | 54 | 2012 |
Poincaré and Brunn-Minkowski inequalities on the boundary of weighted Riemannian manifolds AV Kolesnikov, E Milman American Journal of Mathematics 140 (5), 1147-1185, 2018 | 37 | 2018 |
An isoperimetric inequality for uniformly log-concave measures and uniformly convex bodies E Milman, S Sodin Journal of Functional Analysis 254 (5), 1235-1268, 2008 | 36 | 2008 |
The Gaussian double-bubble and multi-bubble conjectures E Milman, J Neeman Annals of Mathematics 195 (1), 89-206, 2022 | 32* | 2022 |
On the Mean-Width of Isotropic Convex Bodies and their Associated Lp-Centroid Bodies E Milman International Mathematics Research Notices 2015 (11), 3408-3423, 2015 | 32 | 2015 |
Properties of isoperimetric, functional and transport-entropy inequalities via concentration E Milman Probability Theory and Related Fields 152, 475-507, 2012 | 30 | 2012 |
Riemannian metrics on convex sets with applications to Poincaré and log-Sobolev inequalities AV Kolesnikov, E Milman Calculus of Variations and Partial Differential Equations 55 (4), 77, 2016 | 29 | 2016 |