关注
Kevin Ryczko
Kevin Ryczko
SandboxAQ
在 sandboxaq.com 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Deep learning and density-functional theory
K Ryczko, DA Strubbe, I Tamblyn
Physical Review A 100 (2), 022512, 2019
1142019
Convolutional neural networks for atomistic systems
K Ryczko, K Mills, I Luchak, C Homenick, I Tamblyn
Computational Materials Science 149, 134-142, 2018
602018
Extensive deep neural networks for transferring small scale learning to large scale systems
K Mills, K Ryczko, I Luchak, A Domurad, C Beeler, I Tamblyn
Chemical science 10 (15), 4129-4140, 2019
532019
Crystal site feature embedding enables exploration of large chemical spaces
H Choubisa, M Askerka, K Ryczko, O Voznyy, K Mills, I Tamblyn, ...
Matter 3 (2), 433-448, 2020
422020
Toward Orbital-Free Density Functional Theory with Small Data Sets and Deep Learning
K Ryczko, SJ Wetzel, RG Melko, I Tamblyn
Journal of Chemical Theory and Computation 18 (2), 1122-1128, 2022
312022
Hashkat: large-scale simulations of online social networks
K Ryczko, A Domurad, N Buhagiar, I Tamblyn
Social Network Analysis and Mining 7, 1-13, 2017
192017
Machine Learning Diffusion Monte Carlo Energies
K Ryczko, JT Krogel, I Tamblyn
Journal of Chemical Theory and Computation, 2022
132022
Neural evolution structure generation: High entropy alloys
CG Tetsassi Feugmo, K Ryczko, A Anand, CV Singh, I Tamblyn
The Journal of Chemical Physics 155 (4), 044102, 2021
102021
Inverse design of a graphene-based quantum transducer via neuroevolution
K Ryczko, P Darancet, I Tamblyn
The Journal of Physical Chemistry C 124 (48), 26117-26123, 2020
92020
Twin neural network regression
SJ Wetzel, K Ryczko, RG Melko, I Tamblyn
Applied AI Letters 3 (4), e78, 2022
52022
Structural characterization of water-metal interfaces
K Ryczko, I Tamblyn
Physical Review B 96 (6), 064104, 2017
52017
Accelerated Organic Crystal Structure Prediction with Genetic Algorithms and Machine Learning
A Kadan, K Ryczko, A Wildman, R Wang, A Roitberg, T Yamazaki
Journal of Chemical Theory and Computation, 2023
32023
Electric ion dispersion as a new type of mass spectrometer
M Lindstrom, I Moyles, K Ryczko
Mathematics-in-Industry Case Studies 7, 1-13, 2017
22017
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design
A Kadan, K Ryczko, A Roitberg, T Yamazaki
arXiv preprint arXiv:2405.11785, 2024
2024
Accelerating the Computation and Design of Nanoscale Materials with Deep Learning
K Ryczko
University of Ottawa, 2021
2021
Electronic Response Quantities of Solids and Deep Learning
K Ryczko, O Malenfant-Thuot, M Côté, I Tamblyn
arXiv preprint arXiv:2108.07614, 2021
2021
(Invited) Machine Learned Deep Neural Networks to Simulate Raman Spectrum of Defective Graphene Systems
M Cote, O Malenfant-Thuot, K Ryczko, A Majumdar, I Tamblyn
Electrochemical Society Meeting Abstracts 239, 604-604, 2021
2021
Machine Learned Predictions of Complex Quantities from Differentiable Networks
O Malenfant-Thuot, K Ryczko, I Tamblyn, M Cote
APS March Meeting Abstracts 2021, B21. 007, 2021
2021
Learning density functional theory mappings with extensive deep neural networks and deep convolutional inverse graphics networks
K Ryczko, D Strubbe, I Tamblyn
APS March Meeting Abstracts 2019, C18. 013, 2019
2019
Extensive deep neural networks for 2d materials
I Luchak, K Mills, K Ryczko, A Domurad, C Beeler, I Tamblyn
APS March Meeting Abstracts 2018, R12. 001, 2018
2018
系统目前无法执行此操作,请稍后再试。
文章 1–20