Deep learning and density-functional theory K Ryczko, DA Strubbe, I Tamblyn Physical Review A 100 (2), 022512, 2019 | 114 | 2019 |
Convolutional neural networks for atomistic systems K Ryczko, K Mills, I Luchak, C Homenick, I Tamblyn Computational Materials Science 149, 134-142, 2018 | 60 | 2018 |
Extensive deep neural networks for transferring small scale learning to large scale systems K Mills, K Ryczko, I Luchak, A Domurad, C Beeler, I Tamblyn Chemical science 10 (15), 4129-4140, 2019 | 53 | 2019 |
Crystal site feature embedding enables exploration of large chemical spaces H Choubisa, M Askerka, K Ryczko, O Voznyy, K Mills, I Tamblyn, ... Matter 3 (2), 433-448, 2020 | 42 | 2020 |
Toward Orbital-Free Density Functional Theory with Small Data Sets and Deep Learning K Ryczko, SJ Wetzel, RG Melko, I Tamblyn Journal of Chemical Theory and Computation 18 (2), 1122-1128, 2022 | 31 | 2022 |
Hashkat: large-scale simulations of online social networks K Ryczko, A Domurad, N Buhagiar, I Tamblyn Social Network Analysis and Mining 7, 1-13, 2017 | 19 | 2017 |
Machine Learning Diffusion Monte Carlo Energies K Ryczko, JT Krogel, I Tamblyn Journal of Chemical Theory and Computation, 2022 | 13 | 2022 |
Neural evolution structure generation: High entropy alloys CG Tetsassi Feugmo, K Ryczko, A Anand, CV Singh, I Tamblyn The Journal of Chemical Physics 155 (4), 044102, 2021 | 10 | 2021 |
Inverse design of a graphene-based quantum transducer via neuroevolution K Ryczko, P Darancet, I Tamblyn The Journal of Physical Chemistry C 124 (48), 26117-26123, 2020 | 9 | 2020 |
Twin neural network regression SJ Wetzel, K Ryczko, RG Melko, I Tamblyn Applied AI Letters 3 (4), e78, 2022 | 5 | 2022 |
Structural characterization of water-metal interfaces K Ryczko, I Tamblyn Physical Review B 96 (6), 064104, 2017 | 5 | 2017 |
Accelerated Organic Crystal Structure Prediction with Genetic Algorithms and Machine Learning A Kadan, K Ryczko, A Wildman, R Wang, A Roitberg, T Yamazaki Journal of Chemical Theory and Computation, 2023 | 3 | 2023 |
Electric ion dispersion as a new type of mass spectrometer M Lindstrom, I Moyles, K Ryczko Mathematics-in-Industry Case Studies 7, 1-13, 2017 | 2 | 2017 |
Guided Multi-objective Generative AI to Enhance Structure-based Drug Design A Kadan, K Ryczko, A Roitberg, T Yamazaki arXiv preprint arXiv:2405.11785, 2024 | | 2024 |
Accelerating the Computation and Design of Nanoscale Materials with Deep Learning K Ryczko University of Ottawa, 2021 | | 2021 |
Electronic Response Quantities of Solids and Deep Learning K Ryczko, O Malenfant-Thuot, M Côté, I Tamblyn arXiv preprint arXiv:2108.07614, 2021 | | 2021 |
(Invited) Machine Learned Deep Neural Networks to Simulate Raman Spectrum of Defective Graphene Systems M Cote, O Malenfant-Thuot, K Ryczko, A Majumdar, I Tamblyn Electrochemical Society Meeting Abstracts 239, 604-604, 2021 | | 2021 |
Machine Learned Predictions of Complex Quantities from Differentiable Networks O Malenfant-Thuot, K Ryczko, I Tamblyn, M Cote APS March Meeting Abstracts 2021, B21. 007, 2021 | | 2021 |
Learning density functional theory mappings with extensive deep neural networks and deep convolutional inverse graphics networks K Ryczko, D Strubbe, I Tamblyn APS March Meeting Abstracts 2019, C18. 013, 2019 | | 2019 |
Extensive deep neural networks for 2d materials I Luchak, K Mills, K Ryczko, A Domurad, C Beeler, I Tamblyn APS March Meeting Abstracts 2018, R12. 001, 2018 | | 2018 |