Scalable gradient–enhanced artificial neural networks for airfoil shape design in the subsonic and transonic regimes MA Bouhlel, S He, JRRA Martins Structural and Multidisciplinary Optimization 61 (4), 1363-1376, 2020 | 76 | 2020 |
Natural laminar-flow airfoil optimization design using a discrete adjoint approach Y Shi, CA Mader, S He, GLO Halila, JRRA Martins AIAA Journal 58 (11), 4702-4722, 2020 | 69 | 2020 |
Aerodynamic shape optimization with time spectral flutter adjoint S He, E Jonsson, CA Mader, JRRA Martins AIAA Scitech 2019 Forum, 0697, 2019 | 29 | 2019 |
Data-driven constraint approach to ensure low-speed performance in transonic aerodynamic shape optimization J Li, S He, JRRA Martins Aerospace Science and Technology 92, 536-550, 2019 | 28 | 2019 |
A novel approach to discrete truss design problems using mixed integer neighborhood search M Shahabsafa, A Mohammad-Nezhad, T Terlaky, L Zuluaga, S He, ... Structural and Multidisciplinary Optimization 58, 2411-2429, 2018 | 21 | 2018 |
A Coupled Newton–Krylov Time Spectral Solver for Flutter Prediction S He, E Jonsson, CA Mader, J Martins 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018 | 20 | 2018 |
A Coupled Newton-Krylov Time Spectral Solver for Wing Flutter and LCO Prediction S He, E Jonsson, CA Mader, J Martins AIAA Aviation 2019 Forum, 3549, 2019 | 17 | 2019 |
Coupled Newton–Krylov time-spectral solver for flutter and limit cycle oscillation prediction S He, E Jonsson, CA Mader, JRRA Martins AIAA Journal 59 (6), 2214-2232, 2021 | 16 | 2021 |
Truss topology design and sizing optimization with guaranteed kinematic stability M Shahabsafa, R Fakhimi, W Lei, S He, JRRA Martins, T Terlaky, ... Structural and Multidisciplinary Optimization 63, 21-38, 2021 | 12 | 2021 |
Physics-based data-driven buffet-onset constraint for aerodynamic shape optimization J Li, S He, M Zhang, JRRA Martins, B Cheong Khoo AIAA Journal 60 (8), 4775-4788, 2022 | 11 | 2022 |
Discrete multi-load truss sizing optimization: model analysis and computational experiments R Fakhimi, M Shahabsafa, W Lei, S He, JRRA Martins, T Terlaky, ... Optimization and Engineering, 1-27, 2022 | 9 | 2022 |
Towards passive aeroelastic tailoring of large wind turbines using high-fidelity multidisciplinary design optimization M Mangano, S He, Y Liao, DG Caprace, JR Martins AIAA SCITECH 2022 Forum, 1289, 2022 | 9 | 2022 |
Incorporating High-Fidelity Aerostructural Analyses in Wind Turbine Rotor Optimization DG Caprace, A Cardoza, A Ning, M Mangano, S He, JR Martins AIAA SciTech 2022 Forum, 1290, 2022 | 7 | 2022 |
Aerodynamic Shape Optimization using a Time-Spectral Approach for Limit Cycle Oscillation Prediction S He | 7 | 2021 |
Eigenvalue problem derivatives computation for a complex matrix using the adjoint method S He, Y Shi, E Jonsson, JRRA Martins Mechanical Systems and Signal Processing 185, 109717, 2023 | 6 | 2023 |
Derivatives for eigenvalues and eigenvectors via analytic reverse algorithmic differentiation S He, E Jonsson, JRRA Martins AIAA Journal 60 (4), 2654-2667, 2022 | 6 | 2022 |
Hydrostructural optimization of generic composite hydrofoils Y Liao, S He, JRRA Martins, YL Young AIAA Scitech 2020 Forum, 0164, 2020 | 6 | 2020 |
Efficient data-driven off-design constraint modeling for practical aerodynamic shape optimization J Li, S He, JRRA Martins, M Zhang, B Cheong Khoo AIAA Journal 61 (7), 2854-2866, 2023 | 5 | 2023 |
Wing Aerodynamic Shape Optimization with Time Spectral Limit-Cycle Oscillation Adjoint S He, E Jonsson, JR Martins AIAA AVIATION 2022 Forum, 3357, 2022 | 5 | 2022 |
Adjoint-based limit cycle oscillation instability sensitivity and suppression S He, E Jonsson, JRRA Martins Nonlinear Dynamics 111 (4), 3191-3205, 2023 | 4 | 2023 |