Improving adversarial robustness of ensembles with diversity training S Kariyappa, MK Qureshi arXiv preprint arXiv:1901.09981, 2019 | 141 | 2019 |
Maze: Data-free model stealing attack using zeroth-order gradient estimation S Kariyappa, A Prakash, MK Qureshi Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2021 | 131 | 2021 |
Defending against model stealing attacks with adaptive misinformation S Kariyappa, MK Qureshi Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern …, 2020 | 102 | 2020 |
Reducing the impact of phase-change memory conductance drift on the inference of large-scale hardware neural networks S Ambrogio, M Gallot, K Spoon, H Tsai, C Mackin, M Wesson, ... 2019 IEEE International Electron Devices Meeting (IEDM), 6.1. 1-6.1. 4, 2019 | 59 | 2019 |
Enabling transparent memory-compression for commodity memory systems V Young, S Kariyappa, MK Qureshi 2019 IEEE International Symposium on High Performance Computer Architecture …, 2019 | 36* | 2019 |
Noise-resilient DNN: tolerating noise in PCM-based AI accelerators via noise-aware training S Kariyappa, H Tsai, K Spoon, S Ambrogio, P Narayanan, C Mackin, ... IEEE Transactions on Electron Devices 68 (9), 4356-4362, 2021 | 27 | 2021 |
Protecting dnns from theft using an ensemble of diverse models S Kariyappa, A Prakash, MK Qureshi International Conference on Learning Representations, 2021 | 24 | 2021 |
Exploit: Extracting private labels in split learning S Kariyappa, MK Qureshi 2023 IEEE conference on secure and trustworthy machine learning (SaTML), 165-175, 2023 | 23* | 2023 |
Bespoke cache enclaves: Fine-grained and scalable isolation from cache side-channels via flexible set-partitioning G Saileshwar, S Kariyappa, M Qureshi 2021 International Symposium on Secure and Private Execution Environment …, 2021 | 16 | 2021 |
Cocktail party attack: Breaking aggregation-based privacy in federated learning using independent component analysis S Kariyappa, C Guo, K Maeng, W Xiong, GE Suh, MK Qureshi, HHS Lee International Conference on Machine Learning, 15884-15899, 2023 | 15 | 2023 |
Measuring and controlling split layer privacy leakage using fisher information K Maeng, C Guo, S Kariyappa, E Suh arXiv preprint arXiv:2209.10119, 2022 | 4 | 2022 |
Bounding the invertibility of privacy-preserving instance encoding using fisher information K Maeng, C Guo, S Kariyappa, GE Suh Advances in Neural Information Processing Systems 36, 2024 | 3 | 2024 |
Privacy-Preserving Algorithmic Recourse S Pentyala, S Sharma, S Kariyappa, F Lecue, D Magazzeni arXiv preprint arXiv:2311.14137, 2023 | 2 | 2023 |
Information Flow Control in Machine Learning through Modular Model Architecture T Tiwari, S Gururangan, C Guo, W Hua, S Kariyappa, U Gupta, W Xiong, ... arXiv preprint arXiv:2306.03235, 2023 | 2 | 2023 |
Drift regularization to counteract variation in drift coefficients for analog accelerators H Tsai, S Kariyappa US Patent 11,514,326, 2022 | 2 | 2022 |
Enabling inference privacy with adaptive noise injection S Kariyappa, O Dia, MK Qureshi arXiv preprint arXiv:2104.02261, 2021 | 2 | 2021 |
Neural network accelerators resilient to conductance drift H Tsai, S Ambrogio, S Kariyappa, M Gallot US Patent App. 17/035,005, 2022 | 1 | 2022 |
Progressive Inference: Explaining Decoder-Only Sequence Classification Models Using Intermediate Predictions S Kariyappa, F Lécué, S Mishra, C Pond, D Magazzeni, M Veloso arXiv preprint arXiv:2406.02625, 2024 | | 2024 |
SHAP@ k: Efficient and Probably Approximately Correct (PAC) Identification of Top-k Features S Kariyappa, L Tsepenekas, F Lécué, D Magazzeni Proceedings of the AAAI Conference on Artificial Intelligence 38 (12), 13068 …, 2024 | | 2024 |
2021 International Symposium on Secure and Private Execution Environment Design (SEED)| 978-1-6654-2025-9/21/$31.00© 2021 IEEE| DOI: 10.1109/SEED51797. 2021.00034 A Aharon, I Akturk, FA Andargie, MA Arroyo, T Austin, A Awad, L Biernacki, ... | | |