Unconditionally optimal error estimates of a Crank--Nicolson Galerkin method for the nonlinear thermistor equations B Li, H Gao, W Sun SIAM Journal on Numerical Analysis 52 (2), 933-954, 2014 | 118 | 2014 |
An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg–Landau equations of superconductivity H Gao, W Sun Journal of Computational Physics 294, 329-345, 2015 | 60 | 2015 |
Optimal error estimates of linearized Crank-Nicolson Galerkin FEMs for the time-dependent Ginzburg--Landau equations in superconductivity H Gao, B Li, W Sun SIAM Journal on Numerical Analysis 52 (3), 1183-1202, 2014 | 60 | 2014 |
Optimal error analysis of Galerkin FEMs for nonlinear Joule heating equations H Gao Journal of Scientific Computing 58 (3), 627-647, 2014 | 59 | 2014 |
Unconditional optimal error estimates of BDF–Galerkin FEMs for nonlinear thermistor equations H Gao Journal of Scientific Computing 66 (2), 504-527, 2016 | 51 | 2016 |
A semi-implicit energy conserving finite element method for the dynamical incompressible magnetohydrodynamics equations H Gao, W Qiu Computer Methods in Applied Mechanics and Engineering 346, 982-1001, 2019 | 46 | 2019 |
Linearized conservative finite element methods for the Nernst–Planck–Poisson equations H Gao, D He Journal of Scientific Computing 72 (3), 1269-1289, 2017 | 46 | 2017 |
Optimal error estimates of a linearized backward Euler FEM for the Landau--Lifshitz equation H Gao SIAM Journal on Numerical Analysis 52 (5), 2574-2593, 2014 | 45 | 2014 |
An efficient second-order linear scheme for the phase field model of corrosive dissolution H Gao, L Ju, R Duddu, H Li Journal of Computational and Applied Mathematics 367, 112472, 2020 | 25 | 2020 |
A linearized local conservative mixed finite element method for Poisson–Nernst–Planck equations H Gao, P Sun Journal of Scientific Computing 77, 793-817, 2018 | 23 | 2018 |
A new mixed formulation and efficient numerical solution of Ginzburg--Landau equations under the temporal gauge H Gao, W Sun SIAM Journal on Scientific Computing 38 (3), A1339-A1357, 2016 | 22 | 2016 |
Optimal error analysis of Euler and Crank--Nicolson projection finite difference schemes for Landau--Lifshitz equation R An, H Gao, W Sun SIAM Journal on Numerical Analysis 59 (3), 1639-1662, 2021 | 18 | 2021 |
A space-time adaptive finite element method with exponential time integrator for the phase field model of pitting corrosion H Gao, L Ju, X Li, R Duddu Journal of Computational Physics 406, 109191, 2020 | 18 | 2020 |
Error analysis of mixed finite element methods for nonlinear parabolic equations H Gao, W Qiu Journal of Scientific Computing 77 (3), 1660-1678, 2018 | 18 | 2018 |
Analysis of linearized Galerkin-mixed FEMs for the time-dependent Ginzburg-Landau equations of superconductivity H Gao, W Sun Advances in Computational Mathematics 44, 923-949, 2018 | 16 | 2018 |
Stability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon H Gao, B Li, W Sun Numerische Mathematik 136, 383-409, 2017 | 16 | 2017 |
A stabilized semi-implicit Euler Gauge-invariant method for the time-dependent Ginzburg–Landau equations H Gao, L Ju, W Xie Journal of Scientific Computing 80, 1083-1115, 2019 | 12 | 2019 |
Efficient numerical solution of dynamical Ginzburg-Landau equations under the Lorentz gauge H Gao Communications in Computational Physics 22 (1), 182-201, 2017 | 10 | 2017 |
Optimal error analysis of Crank–Nicolson lowest‐order Galerkin‐mixed finite element method for incompressible miscible flow in porous media H Gao, W Sun Numerical Methods for Partial Differential Equations 36 (6), 1773-1789, 2020 | 7 | 2020 |
Optimal error estimates and recovery technique of a mixed finite element method for nonlinear thermistor equations H Gao, W Sun, C Wu IMA Journal of Numerical Analysis 41 (4), 3175-3200, 2021 | 6 | 2021 |