Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction J Zhang, Y Zheng, D Qi Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence …, 2017 | 2246 | 2017 |
DNN-based prediction model for spatio-temporal data J Zhang, Y Zheng, D Qi, R Li, X Yi Proceedings of the 24th ACM SIGSPATIAL international conference on advances …, 2016 | 764 | 2016 |
Geoman: Multi-level attention networks for geo-sensory time series prediction. Y Liang, S Ke, J Zhang, X Yi, Y Zheng IJCAI 2018, 3428-3434, 2018 | 539 | 2018 |
Urban traffic prediction from spatio-temporal data using deep meta learning Z Pan, Y Liang, W Wang, Y Yu, Y Zheng, J Zhang Proceedings of the 25th ACM SIGKDD international conference on knowledge …, 2019 | 523 | 2019 |
Predicting citywide crowd flows using deep spatio-temporal residual networks J Zhang, Y Zheng, D Qi, R Li, X Yi, T Li Artificial Intelligence 259, 147-166, 2018 | 475 | 2018 |
When Will You Arrive? Estimating Travel Time Based on Deep Neural Networks D Wang, J Zhang, W Cao, J Li, Y Zheng Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence …, 2018 | 385 | 2018 |
Deep distributed fusion network for air quality prediction X Yi, J Zhang, Z Wang, T Li, Y Zheng Proceedings of the 24th ACM SIGKDD international conference on knowledge …, 2018 | 351 | 2018 |
Flow prediction in spatio-temporal networks based on multitask deep learning J Zhang, Y Zheng, J Sun, D Qi IEEE Transactions on Knowledge and Data Engineering 32 (3), 468-478, 2019 | 311 | 2019 |
Urban flow prediction from spatiotemporal data using machine learning: A survey P Xie, T Li, J Liu, S Du, X Yang, J Zhang Information Fusion 59, 1-12, 2020 | 254 | 2020 |
A fuzzy rough set approach for incremental feature selection on hybrid information systems A Zeng, T Li, D Liu, J Zhang, H Chen Fuzzy Sets and Systems 258, 39-60, 2015 | 210 | 2015 |
Predicting citywide crowd flows in irregular regions using multi-view graph convolutional networks J Sun, J Zhang, Q Li, X Yi, Y Liang, Y Zheng IEEE Transactions on Knowledge and Data Engineering, 2020 | 205 | 2020 |
Composite rough sets for dynamic data mining J Zhang, T Li, H Chen Information Sciences, 2014 | 195 | 2014 |
Federated Forest Y Liu, Y Liu, Z Liu, J Zhang, C Meng, Y Zheng IEEE Transactions on Big Data, 2020 | 193 | 2020 |
ST-MVL: Filling Missing Values in Geo-sensory Time Series Data X Yi, Y Zheng, J Zhang, T Li | 191 | 2016 |
Multi-source information fusion based on rough set theory: A review P Zhang, T Li, G Wang, C Luo, H Chen, J Zhang, D Wang, Z Yu Information Fusion 68, 85-117, 2021 | 185 | 2021 |
Traffic Flow Forecasting with Spatial-Temporal Graph Diffusion Network X Zhang, C Huang, Y Xu, L Xia, P Dai, L Bo, J Zhang, Y Zheng The 35th AAAI Conference, 2021 | 180 | 2021 |
Rough sets based matrix approaches with dynamic attribute variation in set-valued information systems J Zhang, T Li, D Ruan, D Liu International Journal of Approximate Reasoning 53 (4), 620-635, 2012 | 180 | 2012 |
DeepCrime: Attentive hierarchical recurrent networks for crime prediction C Huang, J Zhang, Y Zheng, NV Chawla Proceedings of the 27th ACM international conference on information and …, 2018 | 172 | 2018 |
Neighborhood rough sets for dynamic data mining J Zhang, T Li, D Ruan, D Liu International Journal of Intelligent Systems 27 (4), 317-342, 2012 | 154 | 2012 |
A parallel method for computing rough set approximations J Zhang, T Li, D Ruan, Z Gao, C Zhao Information Sciences, 2012 | 145 | 2012 |