关注
Sella Nevo
Sella Nevo
Director of the Meselson Center, RAND
在 rand.org 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Flood forecasting with machine learning models in an operational framework
S Nevo, E Morin, A Gerzi Rosenthal, A Metzger, C Barshai, D Weitzner, ...
Hydrology and Earth System Sciences 26 (15), 4013-4032, 2022
1062022
Caravan-A global community dataset for large-sample hydrology
F Kratzert, G Nearing, N Addor, T Erickson, M Gauch, O Gilon, ...
Scientific Data 10 (1), 61, 2023
612023
Hydronets: Leveraging river structure for hydrologic modeling
Z Moshe, A Metzger, G Elidan, F Kratzert, S Nevo, R El-Yaniv
arXiv preprint arXiv:2007.00595, 2020
382020
Data assimilation and autoregression for using near-real-time streamflow observations in long short-term memory networks
GS Nearing, D Klotz, AK Sampson, F Kratzert, M Gauch, JM Frame, ...
Hydrology and earth system sciences discussions 2021, 1-25, 2021
312021
ML for flood forecasting at scale
S Nevo, V Anisimov, G Elidan, R El-Yaniv, P Giencke, Y Gigi, A Hassidim, ...
arXiv preprint arXiv:1901.09583, 2019
302019
Global prediction of extreme floods in ungauged watersheds
G Nearing, D Cohen, V Dube, M Gauch, O Gilon, S Harrigan, A Hassidim, ...
Nature 627 (8004), 559-563, 2024
202024
Caravan–A global community dataset for large-sample hydrology, Sci. Data, 10, 61
F Kratzert, G Nearing, N Addor, T Erickson, M Gauch, O Gilon, ...
182023
A deep learning architecture for conservative dynamical systems: Application to rainfall-runoff modeling
G Nearing, F Kratzert, D Klotz, PJ Hoedt, G Klambauer, S Hochreiter, ...
AI for Earth Sciences Workshop at NeurIPS, 2020
142020
Caravan-A global community dataset for large-sample hydrology, Scientific Data, 10, 61
F Kratzert, G Nearing, N Addor, T Erickson, M Gauch, O Gilon, ...
122023
Inundation modeling in data scarce regions
Z Ben-Haim, V Anisimov, A Yonas, V Gulshan, Y Shafi, S Hoyer, S Nevo
arXiv preprint arXiv:1910.05006, 2019
112019
AI increases global access to reliable flood forecasts
G Nearing, D Cohen, V Dube, M Gauch, O Gilon, S Harrigan, A Hassidim, ...
arXiv preprint arXiv:2307.16104, 2023
82023
Physics-aware downsampling with deep learning for scalable flood modeling
N Giladi, Z Ben-Haim, S Nevo, Y Matias, D Soudry
Advances in Neural Information Processing Systems 34, 1378-1389, 2021
72021
A neural encoder for earthquake rate forecasting
O Zlydenko, G Elidan, A Hassidim, D Kukliansky, Y Matias, B Meade, ...
Scientific Reports 13 (1), 12350, 2023
62023
Accurate hydrologic modeling using less information
G Shalev, R El-Yaniv, D Klotz, F Kratzert, A Metzger, S Nevo
arXiv preprint arXiv:1911.09427, 2019
62019
An inside look at flood forecasting
S Nevo
Google Al Blog, 2019
62019
ML-based flood forecasting: Advances in scale, accuracy and reach
S Nevo, G Elidan, A Hassidim, G Shalev, O Gilon, G Nearing, Y Matias
arXiv preprint arXiv:2012.00671, 2020
52020
Hydronets: Leveraging river structure for hydrologic modeling, arXiv
Z Moshe, A Metzger, G Elidan, F Kratzert, S Nevo, R El-Yaniv
arXiv preprint arXiv:2007.00595 1, 2020
52020
Towards global remote discharge estimation: Using the few to estimate the many
Y Gigi, G Elidan, A Hassidim, Y Matias, Z Moshe, S Nevo, G Shalev, ...
arXiv preprint arXiv:1901.00786, 2019
52019
Securing Artificial Intelligence Model Weights: Interim Report
S Nevo, D Lahav, A Karpur, J Alstott, J Matheny
RAND, 2023
42023
Accelerating physics simulations with tensor processing units: An inundation modeling example
RL Hu, D Pierce, Y Shafi, A Boral, V Anisimov, S Nevo, Y Chen
The International Journal of High Performance Computing Applications 36 (4 …, 2022
42022
系统目前无法执行此操作,请稍后再试。
文章 1–20