DeepAR: Probabilistic forecasting with autoregressive recurrent networks D Salinas, V Flunkert, J Gasthaus, T Januschowski International journal of forecasting 36 (3), 1181-1191, 2020 | 2091 | 2020 |
Deep state space models for time series forecasting SS Rangapuram, MW Seeger, J Gasthaus, L Stella, Y Wang, ... Advances in neural information processing systems 31, 2018 | 792 | 2018 |
Gluonts: Probabilistic and neural time series modeling in python A Alexandrov, K Benidis, M Bohlke-Schneider, V Flunkert, J Gasthaus, ... Journal of Machine Learning Research 21 (116), 1-6, 2020 | 232 | 2020 |
High-dimensional multivariate forecasting with low-rank gaussian copula processes D Salinas, M Bohlke-Schneider, L Callot, R Medico, J Gasthaus Advances in neural information processing systems 32, 2019 | 225 | 2019 |
Deep factors for forecasting Y Wang, A Smola, D Maddix, J Gasthaus, D Foster, T Januschowski International conference on machine learning, 6607-6617, 2019 | 215 | 2019 |
Criteria for classifying forecasting methods T Januschowski, J Gasthaus, Y Wang, D Salinas, V Flunkert, ... International Journal of Forecasting 36 (1), 167-177, 2020 | 212 | 2020 |
Probabilistic forecasting with spline quantile function RNNs J Gasthaus, K Benidis, Y Wang, SS Rangapuram, D Salinas, V Flunkert, ... The 22nd international conference on artificial intelligence and statistics …, 2019 | 177 | 2019 |
Probabilistic demand forecasting at scale JH Böse, V Flunkert, J Gasthaus, T Januschowski, D Lange, D Salinas, ... Proceedings of the VLDB Endowment 10 (12), 1694-1705, 2017 | 163 | 2017 |
Deep learning for time series forecasting: Tutorial and literature survey K Benidis, SS Rangapuram, V Flunkert, Y Wang, D Maddix, C Turkmen, ... ACM Computing Surveys 55 (6), 1-36, 2022 | 157 | 2022 |
Elastic machine learning algorithms in amazon sagemaker E Liberty, Z Karnin, B Xiang, L Rouesnel, B Coskun, R Nallapati, ... Proceedings of the 2020 ACM SIGMOD International Conference on Management of …, 2020 | 135 | 2020 |
A stochastic memoizer for sequence data F Wood, C Archambeau, J Gasthaus, L James, YW Teh Proceedings of the 26th annual international conference on machine learning …, 2009 | 135 | 2009 |
Neural forecasting: Introduction and literature overview K Benidis, SS Rangapuram, V Flunkert, B Wang, D Maddix, C Turkmen, ... arXiv preprint arXiv:2004.10240 6, 2020 | 121 | 2020 |
Gluonts: Probabilistic time series models in python A Alexandrov, K Benidis, M Bohlke-Schneider, V Flunkert, J Gasthaus, ... arXiv preprint arXiv:1906.05264, 2019 | 109 | 2019 |
Forecasting with trees T Januschowski, Y Wang, K Torkkola, T Erkkilä, H Hasson, J Gasthaus International Journal of Forecasting 38 (4), 1473-1481, 2022 | 91 | 2022 |
The sequence memoizer F Wood, J Gasthaus, C Archambeau, L James, YW Teh Communications of the ACM 54 (2), 91-98, 2011 | 91 | 2011 |
Forecasting big time series: old and new C Faloutsos, J Gasthaus, T Januschowski, Y Wang Proceedings of the VLDB Endowment 11 (12), 2102-2105, 2018 | 84 | 2018 |
End-to-end learning of coherent probabilistic forecasts for hierarchical time series SS Rangapuram, LD Werner, K Benidis, P Mercado, J Gasthaus, ... International Conference on Machine Learning, 8832-8843, 2021 | 75 | 2021 |
Neural contextual anomaly detection for time series CU Carmona, FX Aubet, V Flunkert, J Gasthaus arXiv preprint arXiv:2107.07702, 2021 | 70 | 2021 |
Dependent Dirichlet process spike sorting J Gasthaus, F Wood, D Gorur, Y Teh Advances in neural information processing systems 21, 2008 | 51 | 2008 |
Forecasting big time series: Theory and practice C Faloutsos, V Flunkert, J Gasthaus, T Januschowski, Y Wang Proceedings of the 25th ACM SIGKDD International Conference on Knowledge …, 2019 | 40 | 2019 |