Conditions for superconvergence of HDG methods for second-order elliptic problems B Cockburn, W Qiu, K Shi Mathematics of Computation 81 (279), 1327-1353, 2012 | 121 | 2012 |
An HDG method for linear elasticity with strong symmetric stresses W Qiu, J Shen, K Shi Mathematics of Computation 87 (309), 69-93, 2018 | 106 | 2018 |
A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes W Qiu, K Shi IMA Journal of Numerical Analysis 36 (4), 1943-1967, 2016 | 89 | 2016 |
Superconvergent HDG methods for linear elasticity with weakly symmetric stresses B Cockburn, K Shi IMA Journal of Numerical Analysis 33 (3), 747-770, 2013 | 80 | 2013 |
An HDG method for convection diffusion equation W Qiu, K Shi Journal of Scientific Computing 66 (1), 346-357, 2016 | 72 | 2016 |
Devising HDG methods for Stokes flow: an overview B Cockburn, K Shi Computers & Fluids 98, 221-229, 2014 | 60 | 2014 |
Conditions for superconvergence of HDG methods for Stokes flow B Cockburn, K Shi Mathematics of Computation 82 (282), 651-671, 2013 | 59 | 2013 |
A superconvergent HDG method for the Maxwell equations H Chen, W Qiu, K Shi, M Solano Journal of Scientific Computing 70, 1010-1029, 2017 | 49 | 2017 |
A spectral multiscale hybridizable discontinuous Galerkin method for second order elliptic problems Y Efendiev, R Lazarov, M Moon, K Shi Computer Methods in Applied Mechanics and Engineering 292, 243-256, 2015 | 47 | 2015 |
A priori and computable a posteriori error estimates for an HDG method for the coercive Maxwell equations H Chen, W Qiu, K Shi Computer Methods in Applied Mechanics and Engineering 333, 287-310, 2018 | 40 | 2018 |
Superconvergent HDG methods on isoparametric elements for second-order elliptic problems B Cockburn, W Qiu, K Shi SIAM Journal on Numerical Analysis 50 (3), 1417-1432, 2012 | 34 | 2012 |
Hybridizable discontinuous Galerkin methods for Timoshenko beams F Celiker, B Cockburn, K Shi Journal of Scientific Computing 44 (1), 1-37, 2010 | 34 | 2010 |
A multiscale HDG method for second order elliptic equations. Part I. Polynomial and homogenization-based multiscale spaces Y Efendiev, R Lazarov, K Shi SIAM Journal on Numerical Analysis 53 (1), 342-369, 2015 | 30 | 2015 |
A generalized multiscale finite element method for the Brinkman equation J Galvis, G Li, K Shi Journal of Computational and Applied Mathematics 280, 294-309, 2015 | 28 | 2015 |
A mixed DG method and an HDG method for incompressible magnetohydrodynamics W Qiu, K Shi IMA Journal of Numerical Analysis 40 (2), 1356-1389, 2020 | 24 | 2020 |
A projection-based error analysis of HDG methods for Timoshenko beams F Celiker, B Cockburn, K Shi Mathematics of Computation 81 (277), 131-151, 2012 | 22 | 2012 |
A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media E Chung, Y Efendiev, K Shi, S Ye Networks and Heterogeneous Media 12 (4), 619-642, 2017 | 15 | 2017 |
Convergence of a BE based finite element method for MHD models on Lipschitz domains K Hu, W Qiu, K Shi Journal of Computational and Applied Mathematics 368, 112477, 2020 | 13 | 2020 |
Analysis of a semi-implicit structure-preserving finite element method for the nonstationary incompressible magnetohydrodynamics equations W Qiu, K Shi Computers & Mathematics with Applications 80 (10), 2150-2161, 2020 | 8 | 2020 |
Analysis on an HDG Method for the p-Laplacian Equations W Qiu, K Shi Journal of Scientific Computing 80, 1019-1032, 2019 | 7 | 2019 |