关注
Carlos Mantas
Carlos Mantas
在 decsai.ugr.es 的电子邮件经过验证
标题
引用次数
引用次数
年份
Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring
J Abellán, CJ Mantas
Expert Systems with Applications 41 (8), 3825-3830, 2014
2182014
Credal-C4. 5: Decision tree based on imprecise probabilities to classify noisy data
CJ Mantas, J Abellan
Expert Systems with Applications 41 (10), 4625-4637, 2014
1862014
Interpretation of artificial neural networks by means of fuzzy rules
JL Castro, CJ Mantas, JM Benítez
IEEE Transactions on Neural Networks 13 (1), 101-116, 2002
1582002
Neural networks with a continuous squashing function in the output are universal approximators
JL Castro, CJ Mantas, JM Benıtez
Neural Networks 13 (6), 561-563, 2000
982000
A comparison of random forest based algorithms: random credal random forest versus oblique random forest
CJ Mantas, JG Castellano, S Moral-García, J Abellán
Soft Computing 23, 10739-10754, 2019
902019
Extraction of fuzzy rules from support vector machines
JL Castro, LD Flores-Hidalgo, CJ Mantas, JM Puche
Fuzzy Sets and Systems 158 (18), 2057-2077, 2007
832007
A random forest approach using imprecise probabilities
J Abellán, CJ Mantas, JG Castellano
Knowledge-Based Systems 134, 72-84, 2017
752017
Increasing diversity in random forest learning algorithm via imprecise probabilities
J Abellan, CJ Mantas, JG Castellano, S Moral-García
Expert Systems with Applications 97, 228-243, 2018
562018
Extraction of similarity based fuzzy rules from artificial neural networks
CJ Mantas, JM Puche, JM Mantas
International Journal of Approximate Reasoning 43 (2), 202-221, 2006
552006
Analysis of Credal-C4. 5 for classification in noisy domains
CJ Mantas, J Abellán, JG Castellano
Expert Systems with Applications 61, 314-326, 2016
542016
Analysis and extension of decision trees based on imprecise probabilities: Application on noisy data
CJ Mantas, J Abellán
Expert Systems with Applications 41 (5), 2514-2525, 2014
532014
Bagging of credal decision trees for imprecise classification
S Moral-García, CJ Mantas, JG Castellano, MD Benítez, J Abellan
Expert Systems with Applications 141, 112944, 2020
512020
Decision Tree Ensemble Method for Analyzing Traffic Accidents of Novice Drivers in Urban Areas
S Moral-García, JG Castellano, CJ Mantas, A Montella, J Abellán
Entropy 21 (4), 360, 2019
452019
Artificial neural networks are zero-order TSK fuzzy systems
CJ Mantas, JÉM Puche
IEEE Transactions on Fuzzy Systems 16 (3), 630-643, 2008
442008
AdaptativeCC4. 5: Credal C4. 5 with a rough class noise estimator
J Abellán, CJ Mantas, JG Castellano
Expert Systems with Applications 92, 363-379, 2018
282018
Ensemble of classifier chains and Credal C4. 5 for solving multi-label classification
S Moral-García, CJ Mantas, JG Castellano, J Abellán
Progress in Artificial Intelligence 8 (2), 195-213, 2019
192019
Using Credal C4. 5 for Calibrated Label Ranking in Multi-Label Classification
S Moral-García, CJ Mantas, JG Castellano, J Abellán
International Journal of Approximate Reasoning 147, 60-77, 2022
142022
Non-parametric predictive inference for solving multi-label classification
S Moral-García, CJ Mantas, JG Castellano, J Abellán
Applied Soft Computing 88, 106011, 2020
132020
A neuro-fuzzy approach for feature selection
JM Benitez, JL Castro, CJ Mantas, F Rojas
Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International …, 2001
132001
A generic fuzzy aggregation operator: rules extraction from and insertion into artificial neural networks
CJ Mantas
Soft Computing 12 (5), 493-514, 2008
122008
系统目前无法执行此操作,请稍后再试。
文章 1–20