On the small ball inequality in all dimensions D Bilyk, MT Lacey, A Vagharshakyan Journal of Functional Analysis 254 (9), 2470-2502, 2008 | 146 | 2008 |
Recovering singular integrals from Haar shifts A Vagharshakyan Proceedings of the American Mathematical Society 138 (12), 4303-4309, 2010 | 47 | 2010 |
A simple proof of the sharp weighted estimate for Calderón–Zygmund operators on homogeneous spaces TC Anderson, A Vagharshakyan The Journal of Geometric Analysis 24, 1276-1297, 2014 | 28 | 2014 |
Exponential squared integrability of the discrepancy function in two dimensions D Bilyk, MT Lacey, I Parissis, A Vagharshakyan Mathematika 55 (1-2), 1-27, 2009 | 28 | 2009 |
Weak and Strong type Estimates for Calder\'on-Zygmund Operators TP Hytönen, MT Lacey, MC Reguera, ET Sawyer, I Uriarte-Tuero, ... arXiv preprint arXiv:1006.2530, 2010 | 17 | 2010 |
On the signed small ball inequality D Bilyk, MT Lacey, A Vagharshakyan arXiv preprint arXiv:0709.2713, 2007 | 13 | 2007 |
Weak and Strong-type estimates for Haar Shift Operators: Sharp power on the characteristic TP Hytönen, MT Lacey, MC Reguera, A Vagharshakyan arXiv preprint arXiv:0911.0713, 2009 | 8 | 2009 |
Weak and Strong-type estimates for Haar Shift Operators: Sharp power on the Ap characteristic (2009) T Hytönen, MT Lacey, MC Reguera, A Vagharshakyan | 7 | |
A three-dimensional signed small ball inequality, Dependence in Probability, Analysis and Number Theory, Walter Philipp memorial volume, 7387 D Bilyk, M Lacey, I Parissis, A Vagharshakyan Kendrick Press, Heber City, UT, 2010 | 6 | 2010 |
A three dimensional signed small ball inequality D Bilyk, MT Lacey, I Parissis, A Vagharshakyan arXiv preprint arXiv:0909.5158, 2009 | 5 | 2009 |
Weak and Strong type Ap Estimates for Caldern-Zygmund Operators (2010) T Hytönen, MT Lacey, MC Reguera, ET Sawyer, I Uriarte-Tuero, ... | 5 | |
LOWER BOUNDS FOR DISCREPANCY A Vagharshakyan Mathematika 59 (2), 365-379, 2013 | 3 | 2013 |
A refinement of Carlson's theorem A Vagharshakyan arXiv preprint arXiv:2108.12846, 2021 | 2 | 2021 |
Trigonometric Convexity for the Multidimensional Indicator A Mkrtchyan, A Vagharshakyan Canadian J. Math, 2024 | 1* | 2024 |
Sectorial Paley–Wiener theorem A Vagharshakyan Mathematical Methods in Applied Sciences 46, 19173-19183, 0 | 1* | |
The Hadamard–Bergman Convolution on the Half-Plane A Karapetyants, A Vagharshakyan Journal of Fourier Analysis and Applications 30 (4), 38, 2024 | | 2024 |
An upper bound for the Menchov-Rademacher operator for right triangles A Vagharshakyan Proceedings of the American Mathematical Society 150 (09), 3959-3971, 2022 | | 2022 |
Sectorial Paley-Wiener Theorem A Vagharshakyan Mathematical Methods in the Applied Sciences 46, 19173-19183, 2022 | | 2022 |
A Remark on Coefficients of Jacobi Matrices Arising from a Schrodinger Operator A Vagharshakyan arXiv preprint arXiv:1203.4005, 2012 | | 2012 |
Chebyshev-type quadrature formulas for new weight classes A Vagharshakyan arXiv preprint arXiv:1111.3058, 2011 | | 2011 |