关注
Jianghao Lin
Jianghao Lin
在 sjtu.edu.cn 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
How Can Recommender Systems Benefit from Large Language Models: A Survey
J Lin, X Dai, Y Xi, W Liu, B Chen, H Zhang, Y Liu, C Wu, X Li, C Zhu, ...
arXiv preprint arXiv:2306.05817, 2023
100*2023
Towards open-world recommendation with knowledge augmentation from large language models
Y Xi, W Liu, J Lin, J Zhu, B Chen, R Tang, W Zhang, R Zhang, Y Yu
arXiv preprint arXiv:2306.10933, 2023
672023
ReLLa: Retrieval-enhanced Large Language Models for Lifelong Sequential Behavior Comprehension in Recommendation
J Lin, R Shan, C Zhu, K Du, B Chen, S Quan, R Tang, Y Yu, W Zhang
Proceedings of the ACM on Web Conference 2024, 3497–3508, 2024
37*2024
A graph-enhanced click model for web search
J Lin, W Liu, X Dai, W Zhang, S Li, R Tang, X He, J Hao, Y Yu
Proceedings of the 44th international ACM SIGIR conference on research and …, 2021
332021
An adversarial imitation click model for information retrieval
X Dai, J Lin, W Zhang, S Li, W Liu, R Tang, X He, J Hao, J Wang, Y Yu
Proceedings of the Web Conference 2021, 1809-1820, 2021
292021
Map: A model-agnostic pretraining framework for click-through rate prediction
J Lin, Y Qu, W Guo, X Dai, R Tang, Y Yu, W Zhang
Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and …, 2023
172023
A Bird's-eye View of Reranking: from List Level to Page Level
Y Xi*, J Lin*, W Liu, X Dai, W Zhang, R Zhang, R Tang, Y Yu
Proceedings of the Sixteenth ACM International Conference on Web Search and …, 2023
172023
ClickPrompt: CTR Models are Strong Prompt Generators for Adapting Language Models to CTR Prediction
J Lin, B Chen, H Wang, Y Xi, Y Qu, X Dai, K Zhang, R Tang, Y Yu, ...
Proceedings of the Web Conference 2024, 3319–3330, 2024
12*2024
An f-shape click model for information retrieval on multi-block mobile pages
L Fu*, J Lin*, W Liu, R Tang, W Zhang, R Zhang, Y Yu
Proceedings of the Sixteenth ACM International Conference on Web Search and …, 2023
122023
Mamba4rec: Towards efficient sequential recommendation with selective state space models
C Liu, J Lin, J Wang, H Liu, J Caverlee
arXiv preprint arXiv:2403.03900, 2024
102024
Learning ball-balancing robot through deep reinforcement learning
Y Zhou, J Lin, S Wang, C Zhang
2021 International Conference on Computer, Control and Robotics (ICCCR), 1-8, 2021
102021
Codeapex: A bilingual programming evaluation benchmark for large language models
L Fu, H Chai, S Luo, K Du, W Zhang, L Fan, J Lei, R Rui, J Lin, Y Fang, ...
arXiv preprint arXiv:2309.01940, 2023
52023
Towards Efficient and Effective Unlearning of Large Language Models for Recommendation
H Wang*, J Lin*, B Chen, Y Yang, R Tang, W Zhang, Y Yu
arXiv preprint arXiv:2403.03536, 2024
42024
FLIP: Towards Fine-grained Alignment between ID-based Models and Pretrained Language Models for CTR Prediction
H Wang*, J Lin*, X Li, B Chen, C Zhu, R Tang, W Zhang, Y Yu
arXiv preprint arXiv:2310.19453, 2023
3*2023
SINKT: A Structure-Aware Inductive Knowledge Tracing Model with Large Language Model
L Fu, H Guan, K Du, J Lin, W Xia, W Zhang, R Tang, Y Wang, Y Yu
arXiv preprint arXiv:2407.01245, 2024
2024
ELCoRec: Enhance Language Understanding with Co-Propagation of Numerical and Categorical Features for Recommendation
J Chen, K Du, J Lin, B Chen, R Tang, W Zhang
arXiv preprint arXiv:2406.18825, 2024
2024
Large Language Models Make Sample-Efficient Recommender Systems
J Lin, X Dai, R Shan, B Chen, R Tang, Y Yu, W Zhang
arXiv preprint arXiv:2406.02368, 2024
2024
DisCo: Towards Harmonious Disentanglement and Collaboration between Tabular and Semantic Space for Recommendation
K Du, J Chen, J Lin, Y Xi, H Wang, X Dai, B Chen, R Tang, W Zhang
arXiv preprint arXiv:2406.00011, 2024
2024
Extracting Essential and Disentangled Knowledge for Recommendation Enhancement
K Du, J Chen, J Lin, M Zhu, B Chen, S Li, R Tang
arXiv preprint arXiv:2406.00012, 2024
2024
M-scan: A Multi-Scenario Causal-driven Adaptive Network for Recommendation
J Zhu, Y Wang, J Lin, J Qin, R Tang, W Zhang, Y Yu
Proceedings of the ACM on Web Conference 2024, 3844-3853, 2024
2024
系统目前无法执行此操作,请稍后再试。
文章 1–20