关注
Atticus Geiger
Atticus Geiger
Pr(Ai)²R Group
在 stanford.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Dynabench: Rethinking benchmarking in NLP
D Kiela, M Bartolo, Y Nie, D Kaushik, A Geiger, Z Wu, B Vidgen, G Prasad, ...
In Proceedings of the 2021 Conference of the North American Chapter of the …, 2021
3242021
Causal abstractions of neural networks
A Geiger, H Lu, T Icard, C Potts
Advances in Neural Information Processing Systems 34, 9574-9586, 2021
1302021
Neural natural language inference models partially embed theories of lexical entailment and negation
A Geiger, K Richardson, C Potts
In Proceedings of the Third BlackboxNLP Workshop on Analyzing and …, 2020
792020
DynaSent: A dynamic benchmark for sentiment analysis
C Potts, Z Wu, A Geiger, D Kiela
arXiv preprint arXiv:2012.15349, 2020
722020
Inducing causal structure for interpretable neural networks
A Geiger, Z Wu, H Lu, J Rozner, E Kreiss, T Icard, N Goodman, C Potts
International Conference on Machine Learning, 7324-7338, 2022
632022
Interpretability at scale: Identifying causal mechanisms in alpaca
Z Wu, A Geiger, T Icard, C Potts, N Goodman
Advances in Neural Information Processing Systems 36, 2024
522024
Finding alignments between interpretable causal variables and distributed neural representations
A Geiger, Z Wu, C Potts, T Icard, N Goodman
Causal Learning and Reasoning, 160-187, 2024
502024
Hybrid Pluggable Processing Pipeline (HyP3): A cloud-based infrastructure for generic processing of SAR data
K Hogenson, SA Arko, B Buechler, R Hogenson, J Herrmann, A Geiger
Agu fall meeting abstracts 2016, IN21B-1740, 2016
472016
Posing fair generalization tasks for natural language inference
A Geiger, I Cases, L Karttunen, C Potts
In Proceedings of the 2019 Conference on Empirical Methods in Natural …, 2019
462019
Causal abstraction for faithful model interpretation
A Geiger, C Potts, T Icard
arXiv preprint arXiv:2301.04709, 2023
382023
Cebab: Estimating the causal effects of real-world concepts on nlp model behavior
ED Abraham, K D'Oosterlinck, A Feder, Y Gat, A Geiger, C Potts, ...
Advances in Neural Information Processing Systems 35, 17582-17596, 2022
322022
Recursive routing networks: Learning to compose modules for language understanding
I Cases, C Rosenbaum, M Riemer, A Geiger, T Klinger, A Tamkin, O Li, ...
Proceedings of the 2019 Conference of the North American Chapter of the …, 2019
282019
Stress-testing neural models of natural language inference with multiply-quantified sentences
A Geiger, I Cases, L Karttunen, C Potts
arXiv preprint arXiv:1810.13033, 2018
272018
Causal proxy models for concept-based model explanations
Z Wu, K D’Oosterlinck, A Geiger, A Zur, C Potts
International conference on machine learning, 37313-37334, 2023
262023
Linear representations of sentiment in large language models
C Tigges, OJ Hollinsworth, A Geiger, N Nanda
arXiv preprint arXiv:2310.15154, 2023
212023
Causal distillation for language models
Z Wu, A Geiger, J Rozner, E Kreiss, H Lu, T Icard, C Potts, ND Goodman
arXiv preprint arXiv:2112.02505, 2021
202021
Rigorously assessing natural language explanations of neurons
J Huang, A Geiger, K D'Oosterlinck, Z Wu, C Potts
arXiv preprint arXiv:2309.10312, 2023
192023
Relational reasoning and generalization using nonsymbolic neural networks.
A Geiger, A Carstensen, MC Frank, C Potts
Psychological Review 130 (2), 308, 2023
182023
Reft: Representation finetuning for language models
Z Wu, A Arora, Z Wang, A Geiger, D Jurafsky, CD Manning, C Potts
arXiv preprint arXiv:2404.03592, 2024
102024
ScoNe: Benchmarking Negation Reasoning in Language Models With Fine-Tuning and In-Context Learning
J Selena She, C Potts, SR Bowman, A Geiger
arXiv e-prints, arXiv: 2305.19426, 2023
9*2023
系统目前无法执行此操作,请稍后再试。
文章 1–20