关注
Aditya Tulsyan
标题
引用次数
引用次数
年份
Towards Self-Driving Processes: A Deep Reinforcement Learning Approach to Control
S Spielberg, A Tulsyan, N Lawrence, P Loewen, B Gopaluni
AIChE Journal 65 (6), 1-20, 2019
1292019
State-of-charge estimation in lithium-ion batteries: A particle filter approach
A Tulsyan, Y Tsai, B Gopaluni, R Braatz
Journal of Power Sources 331 (11), 208–223, 2016
1262016
A Deep Learning Architecture for Predictive Control
SSP Kumar, A Tulsyan, B Gopaluni, P Loewen
IFAC-PapersOnLine 51 (18), 512-517, 2018
772018
Multiple model approach to nonlinear system identification with an uncertain scheduling variable using EM algorithm
L Chen, A Tulsyan, B Huang, F Liu
Journal of Process Control 23 (10), 1480-1496, 2013
772013
On simultaneous on-line state and parameter estimation in non-linear state-space models
A Tulsyan, B Huang, RB Gopaluni, JF Forbes
Journal of Process Control 23 (4), 516-526, 2013
622013
Particle filtering without tears: a primer for beginners
A Tulsyan, RB Gopaluni, SR Khare
Computers & Chemical Engineering 95 (12), 130-145, 2016
572016
Advances in industrial biopharmaceutical batch process monitoring: Machine‐learning methods for small data problems
A Tulsyan, C Garvin, C Undey
Biotechnology and Bioengineering 115 (8), 1-10, 2018
552018
A machine learning approach to calibrate generic Raman models for real-time monitoring of cell culture processes
A Tulsyan, G Schorner, H Khodabandehlou, ...
Biotechnology and Bioengineering 116 (10), 2575-2586, 2019
532019
Automatic real‐time calibration, assessment, and maintenance of generic Raman models for online monitoring of cell culture processes
A Tulsyan, T Wang, G Schorner, H Khodabandehlou, M Coufal, C Undey
Biotechnology and Bioengineering 117 (2), 406-416, 2020
492020
Industrial batch process monitoring with limited data
A Tulsyan, C Garvin, C Undey
Journal of Process Control 77 (5), 114-133, 2019
472019
A particle filter approach to approximate posterior Cramér-Rao lower bound: The case of hidden states
A Tulsyan, B Huang, RB Gopaluni, JF Forbes
IEEE Transactions on Aerospace and Electronic Systems 49 (4), 2478-2495, 2013
352013
Modern Machine Learning Tools for Monitoring and Control of Industrial Processes: A Survey
RB Gopaluni, A Tulsyan, B Chachuat, B Huang, JM Lee, F Amjad, ...
IFAC World Congress, 2020
332020
Deep reinforcement learning for process control: A primer for beginners
S Spielberg, A Tulsyan, NP Lawrence, PD Loewen, RB Gopaluni
arXiv preprint arXiv:2004.05490, 2020
322020
Performance assessment, diagnosis, and optimal selection of non-linear state filters
A Tulsyan, B Huang, RB Gopaluni, JF Forbes
Journal of Process Control 24 (2), 460-478, 2014
302014
Design and Assessment of Delay Timer Alarm Systems for Nonlinear Chemical Processes
A Tulsyan, F Alrowaie, RB Gopaluni
AIChE Journal 64 (1), 77-90, 2018
282018
Univariate model-based deadband alarm design for nonlinear processes
A Tulsyan, B Gopaluni
Industrial & Engineering Chemistry Research 58 (26), 11295-11302, 2019
232019
Spectroscopic models for real-time monitoring of cell culture processes using spatiotemporal just-in-time Gaussian processes
A Tulsyan, H Khodabandehlou, T Wang, G Schorner, ...
AIChE Journal 67 (5), 2021
222021
Estimation and identification in batch processes with particle filters
Z Zhao, A Tulsyan, B Huang, F Liu
Journal of Process Control 81 (9), 1-14, 2019
172019
Reachability-based fault detection method for uncertain chemical flow reactors
A Tulsyan, PI Barton
IFAC-PapersOnLine 49 (7), 1-6, 2016
172016
Product Attribute Forecast: Adaptive Model Selection Using Real-Time Machine Learning
ES Bayrak, T Wang, A Tulsyan, M Coufal, C Undey
IFAC-PapersOnLine 51 (18), 121-125, 2018
162018
系统目前无法执行此操作,请稍后再试。
文章 1–20