关注
Huoran Li
Huoran Li
Software Engineering Institute, Peking University, Beijing, China
在 pku.edu.cn 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Through a gender lens: Learning usage patterns of emojis from large-scale android users
Z Chen, X Lu, W Ai, H Li, Q Mei, X Liu
Proceedings of the 2018 world wide web conference, 763-772, 2018
1512018
Characterizing smartphone usage patterns from millions of android users
H Li, X Lu, X Liu, T Xie, K Bian, FX Lin, Q Mei, F Feng
Proceedings of the 2015 Internet Measurement Conference, 459-472, 2015
1442015
PRADA: Prioritizing android devices for apps by mining large-scale usage data
X Lu, X Liu, H Li, T Xie, Q Mei, D Hao, G Huang, F Feng
Proceedings of the 38th International Conference on Software Engineering, 3-13, 2016
652016
Understanding diverse usage patterns from large-scale appstore-service profiles
X Liu, H Li, X Lu, T Xie, Q Mei, F Feng, H Mei
IEEE Transactions on Software Engineering 44 (4), 384-411, 2017
622017
Voting with their feet: Inferring user preferences from app management activities
H Li, W Ai, X Liu, J Tang, G Huang, F Feng, Q Mei
Proceedings of the 25th international conference on world wide web, 1351-1362, 2016
392016
Deriving user preferences of mobile apps from their management activities
X Liu, W Ai, H Li, J Tang, G Huang, F Feng, Q Mei
ACM Transactions on Information Systems (TOIS) 35 (4), 1-32, 2017
382017
Predicting smartphone battery life based on comprehensive and real-time usage data
H Li, X Liu, Q Mei
arXiv preprint arXiv:1801.04069, 2018
322018
Prado: Predicting app adoption by learning the correlation between developer-controllable properties and user behaviors
X Lu, Z Chen, X Liu, H Li, T Xie, Q Mei
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous …, 2017
222017
Mining device-specific apps usage patterns from large-scale android users
H Li, X Lu
arXiv preprint arXiv:1707.09252, 2017
122017
A descriptive analysis of a large-scale collection of app management activities
H Li, X Liu, W Ai, Q Mei, F Feng
Proceedings of the 24th International Conference on World Wide Web, 61-62, 2015
92015
Systematic analysis of fine-grained mobility prediction with on-device contextual data
H Li, F Lin, X Lu, C Xu, G Huang, J Zhang, Q Mei, X Liu
IEEE Transactions on Mobile Computing 21 (3), 1096-1109, 2020
82020
Security analytics for mobile apps: achievements and challenges
W Yang, XS Xiao, D Li, H Li, H Wang, Y Guo, T Xie
Journal of Cyber Security 1 (2), 1-14, 2016
82016
Mining usage data from large-scale android users: challenges and opportunities
X Lu, X Liu, H Li, T Xie, Q Mei, D Hao, G Huang, F Feng
Proceedings of the International Conference on Mobile Software Engineering …, 2016
42016
Mining behavioral patterns from millions of android users
X Liu, H Li, X Lu, T Xie, Q Mei, H Mei, F Feng
arXiv preprint arXiv:1702.05060, 2017
12017
Adoption of Recurrent Innovations: A Large-Scale Case Study on Mobile App Updates
F Lin, X Lu, W Ai, H Li, Y Ma, Y Yang, H Deng, Q Wang, Q Mei, X Liu
ACM Transactions on the Web 18 (1), 1-26, 2023
2023
Method and system for determining quality of application based on user behaviors of application management
X Liu, G Huang, H Mei, H Li, X Lu
US Patent 10,997,637, 2021
2021
A Systematic Analysis of Fine-Grained Human Mobility Prediction with On-Device Contextual Data
H Li
arXiv preprint arXiv:1901.10167, 2019
2019
Method of selecting mobile device models for application development on basis of user operational profiles
X Liu, G Huang, H Mei, X Lu, H Li
US Patent App. 15/746,450, 2018
2018
Mining Device-Specific Apps Usage Patterns from Appstore Big Data
H Li, X Liu, H Mei, Q Mei
Big Data: 6th CCF Conference, Big Data 2018, Xi'an, China, October 11-13 …, 2018
2018
IEEE/ACM 38th IEEE
X Lu, X Liu, H Li, T Xie, Q Mei, D Hao, G Huang, F Feng
系统目前无法执行此操作,请稍后再试。
文章 1–20