关注
Yan Li
Yan Li
在 gatech.edu 的电子邮件经过验证 - 首页
标题
引用次数
引用次数
年份
Toward understanding the importance of noise in training neural networks
M Zhou, T Liu, Y Li, D Lin, E Zhou, T Zhao
International Conference on Machine Learning (ICML), 7594-7602, 2019
882019
Deep reinforcement learning with robust and smooth policy
Y Li*, Q Shen*, H Jiang, Z Wang, T Zhao
International Conference on Machine Learning (ICML), 8707-8718, 2020
73*2020
Implicit bias of gradient descent based adversarial training on separable data
Y Li, EX Fang, H Xu, T Zhao
International Conference on Learning Representations (ICLR), 2020
49*2020
Non-convex conditional gradient sliding
C Qu, Y Li, H Xu
International Conference on Machine Learning (ICML), 4208-4217, 2018
302018
First-order policy optimization for robust Markov decision process
Y Li, G Lan, T Zhao
arXiv preprint arXiv:2209.10579, 2022
282022
Homotopic policy mirror descent: policy convergence, algorithmic regularization, and improved sample complexity
Y Li, G Lan, T Zhao
Mathematical Programming, Series A, 2023
22*2023
Permutation invariant policy optimization for mean-field multi-agent reinforcement learning
Y Li, L Wang, J Yang, E Wang, Z Wang, T Zhao, H Zha
arXiv preprint arXiv:2105.08268, 2021
202021
Pessimism meets invariance: provably efficient offline mean-field multi-agent RL
M Chen, Y Li, E Wang, Z Yang, Z Wang, T Zhao
Advances in Neural Information Processing Systems (NeurIPS) 34, 17913-17926, 2021
172021
Noisy gradient descent converges to flat minima for nonconvex matrix factorization
T Liu, Y Li, S Wei, E Zhou, T Zhao
International Conference on Artificial Intelligence and Statistics (AISTAT …, 2021
112021
Block policy mirror descent
G Lan, Y Li, T Zhao
SIAM Journal on Optimization, 2023
82023
Implicit regularization of bregman proximal point algorithm and mirror descent on separable data
Y Li, C Ju, EX Fang, T Zhao
arXiv preprint arXiv:2108.06808, 2021
82021
First-order policy optimization for robust policy evaluation
Y Li, G Lan
arXiv preprint arXiv:2307.15890, 2023
72023
Policy mirror descent inherently explores action space
Y Li, G Lan
arXiv preprint arXiv:2303.04386, 2023
72023
Robust multi-agent reinforcement learning via adversarial regularization: theoretical foundation and stable algorithms
A Bukharin, Y Li, Y Yu, Q Zhang, Z Chen, S Zuo, C Zhang, S Zhang, ...
Advances in Neural Information Processing Systems (NeurIPS), 2023
62023
Frequency-aware SGD for efficient embedding learning with provable benefits
Y Li, D Choudhary, X Wei, B Yuan, B Bhushanam, T Zhao, G Lan
International Conference on Learning Representations (ICLR), 2022
42022
Rectangularity and duality of distributionally robust Markov decision processes
Y Li, A Shapiro
arXiv preprint arXiv:2308.11139, 2023
22023
Distributionally robust stochastic optimal control
A Shapiro, Y Li
arXiv preprint arXiv:2406.05648, 2024
2024
A novel catalyst scheme for stochastic minimax optimization
G Lan, Y Li
arXiv preprint arXiv:2311.02814, 2023
2023
Noise regularizes over-parameterized rank one matrix recovery, provably
T Liu, Y Li, E Zhou, T Zhao
International Conference on Artificial Intelligence and Statistics (AISTAT …, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–19