受强制性开放获取政策约束的文章 - Anant Raj了解详情
可在其他位置公开访问的文章:11 篇
Scalable kernel methods via doubly stochastic gradients
B Dai, B Xie, N He, Y Liang, A Raj, MFF Balcan, L Song
Advances in neural information processing systems 27, 2014
强制性开放获取政策: US National Institutes of Health
Convergence of uncertainty sampling for active learning
A Raj, F Bach
International Conference on Machine Learning, 18310-18331, 2022
强制性开放获取政策: European Commission, Agence Nationale de la Recherche
Explicit regularization in overparametrized models via noise injection
A Orvieto*, A Raj*, H Kersting*, F Bach
International Conference on Artificial Intelligence and Statistics, 7265-7287, 2023
强制性开放获取政策: European Commission
On Matching Pursuit and Coordinate Descent
F Locatello*, A Raj*, SP Reddy, G Rätsch, B Schölkopf, SU Stich, M Jaggi
International Conference on Machine Learning (ICML), 2018
强制性开放获取政策: Swiss National Science Foundation
Algorithmic stability of heavy-tailed sgd with general loss functions
A Raj, L Zhu, M Gurbuzbalaban, U Simsekli
International Conference on Machine Learning, 28578-28597, 2023
强制性开放获取政策: US National Science Foundation, US Department of Defense, European …
Algorithmic stability of heavy-tailed stochastic gradient descent on least squares
A Raj, M Barsbey, M Gurbuzbalaban, L Zhu, U Şim
International Conference on Algorithmic Learning Theory, 1292-1342, 2023
强制性开放获取政策: US National Science Foundation, US Department of Defense, European …
Variational principles for mirror descent and mirror langevin dynamics
B Tzen, A Raj, M Raginsky, F Bach
IEEE Control Systems Letters 7, 1542-1547, 2023
强制性开放获取政策: US National Science Foundation, European Commission
Explicit regularization of stochastic gradient methods through duality
A Raj, F Bach
International Conference on Artificial Intelligence and Statistics, 1882-1890, 2021
强制性开放获取政策: European Commission, Agence Nationale de la Recherche
Uniform-in-time Wasserstein stability bounds for (noisy) stochastic gradient descent
L Zhu, M Gurbuzbalaban, A Raj, U Simsekli
Advances in Neural Information Processing Systems 36, 2024
强制性开放获取政策: European Commission, Agence Nationale de la Recherche
Efficient sampling of stochastic differential equations with positive semi-definite models
A Raj, U Simsekli, A Rudi
Advances in Neural Information Processing Systems 36, 2024
强制性开放获取政策: European Commission, Agence Nationale de la Recherche
Small steps no more: Global convergence of stochastic gradient bandits for arbitrary learning rates
J Mei, B Dai, A Agarwal, S Vaswani, A Raj, C Szepesvari, D Schuurmans
The Thirty-eighth Annual Conference on Neural Information Processing Systems …, 2024
强制性开放获取政策: Natural Sciences and Engineering Research Council of Canada
出版信息和资助信息由计算机程序自动确定