Cluster failure: Why fMRI inferences for spatial extent have inflated false positive rates A Eklund, TE Nichols, H Knutsson Proceedings of the National Academy of Sciences 113 (28), 7900–7905, 2016 | 3670 | 2016 |
Medical image processing on the GPU–Past, present and future A Eklund, P Dufort, D Forsberg, SM LaConte Medical Image Analysis 17 (8), 1073-1094, 2013 | 516 | 2013 |
BIDS Apps: Improving ease of use, accessibility and reproducibility of neuroimaging data analysis methods K Gorgolewski, F Alfaro-Almagro, T Auer, P Bellec, M Capota, ... PLOS Computational Biology 13 (3), e1005209, 2017 | 295 | 2017 |
Vox2Vox: 3D GAN for brain tumour segmentation MD Cirillo, D Abramian, A Eklund Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries …, 2020 | 142 | 2020 |
Does parametric fMRI analysis with SPM yield valid results? - An empirical study of 1484 rest datasets A Eklund, M Andersson, C Josephson, M Johannesson, H Knutsson NeuroImage 61 (3), 565-578, 2012 | 142 | 2012 |
Generative adversarial networks for image-to-image translation on multi-contrast MR images - A comparison of CycleGAN and UNIT P Welander, S Karlsson, A Eklund arXiv:1806.07777, 2018 | 131 | 2018 |
BROCCOLI: Software for fast fMRI analysis on many-core CPUs and GPUs A Eklund, P Dufort, M Villani, S LaConte Frontiers in Neuroinformatics 8, 24, 2014 | 97 | 2014 |
Cluster failure revisited: Impact of first level design and physiological noise on cluster false positive rates A Eklund, H Knutsson, TE Nichols Human Brain Mapping 40, 2017-2032, 2019 | 76 | 2019 |
Can parametric statistical methods be trusted for fMRI based group studies? A Eklund, T Nichols, H Knutsson arXiv:1511.01863, 2015 | 74 | 2015 |
Classification of short time series in early Parkinson's disease with deep learning of fuzzy recurrence plots T Pham, K Wårdell, A Eklund, G Salerud IEEE/CAA Journal of Automatica Sinica 6, 1306-1317, 2019 | 66 | 2019 |
Refacing: reconstructing anonymized facial features using GANs D Abramian, A Eklund IEEE International Symposium on Biomedical Imaging (ISBI), 1104-1108, 2019 | 63 | 2019 |
fMRI analysis on the GPU—possibilities and challenges A Eklund, M Andersson, H Knutsson Computer Methods and Programs in Biomedicine 105 (2), 145-161, 2012 | 62 | 2012 |
Fast Bayesian whole-brain fMRI analysis with spatial 3D priors P Sidén, A Eklund, D Bolin, M Villani NeuroImage 146, 211-225, 2017 | 47 | 2017 |
Inflation of test accuracy due to data leakage in deep learning-based classification of OCT images IE Tampu, A Eklund, N Haj-Hosseini Scientific Data 9, 580, 2022 | 39 | 2022 |
Brainhack: developing a culture of open, inclusive, community-driven neuroscience R Gau, S Noble, K Heuer, KL Bottenhorn, IP Bilgin, YF Yang, ... Neuron 109, 1769-1775, 2021 | 37 | 2021 |
Generating diffusion MRI scalar maps from T1-weighted images using generative adversarial networks X Gu, H Knutsson, M Nilsson, A Eklund Scandinavian Conference on Image Analysis (SCIA), 489-498, 2019 | 36 | 2019 |
Fast random permutation tests enable objective evaluation of methods for single-subject FMRI analysis A Eklund, M Andersson, H Knutsson International Journal of Biomedical Imaging 2011, 2011 | 36 | 2011 |
What is the best data augmentation for 3D brain tumor segmentation? MD Cirillo, D Abramian, A Eklund IEEE International Conference on Image Processing, 2021 | 35 | 2021 |
Phase based volume registration using CUDA A Eklund, M Andersson, H Knutsson International Conference on Acoustics, Speech and Signal Processing (ICASSP …, 2010 | 31 | 2010 |
Using real-time fMRI to control a dynamical system by brain activity classification A Eklund, H Ohlsson, M Andersson, J Rydell, A Ynnerman, H Knutsson MICCAI, 1000-1008, 2009 | 30 | 2009 |