关注
Gianmarco Aversano
Gianmarco Aversano
在 ulb.ac.be 的电子邮件经过验证
标题
引用次数
引用次数
年份
Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications
G Aversano, A Bellemans, Z Li, A Coussement, O Gicquel, A Parente
Computers & chemical engineering 121, 422-441, 2019
912019
Digital twin of a combustion furnace operating in flameless conditions: reduced-order model development from CFD simulations
G Aversano, M Ferrarotti, A Parente
Proceedings of the Combustion Institute 38 (4), 5373-5381, 2021
622021
Data-driven fluid mechanics: combining first principles and machine learning
MA Mendez, A Ianiro, BR Noack, SL Brunton
Cambridge University Press, 2023
282023
Optimization of chemical kinetics for methane and biomass pyrolysis products in moderate or intense low-Oxygen dilution combustion
M Fürst, P Sabia, M Lubrano Lavadera, G Aversano, M De Joannon, ...
Energy & fuels 32 (10), 10194-10201, 2018
282018
Feature extraction and reduced-order modelling of nitrogen plasma models using principal component analysis
A Bellemans, G Aversano, A Coussement, A Parente
Computers & chemical engineering 115, 504-514, 2018
262018
Impact of the partitioning method on multidimensional adaptive-chemistry simulations
G D’Alessio, A Cuoci, G Aversano, M Bracconi, A Stagni, A Parente
Energies 13 (10), 2567, 2020
232020
A deep learning approach to infer galaxy cluster masses from Planck Compton-y parameter maps
D de Andres, W Cui, F Ruppin, M De Petris, G Yepes, G Gianfagna, ...
Nature Astronomy 6 (11), 1325-1331, 2022
192022
PCA and Kriging for the efficient exploration of consistency regions in Uncertainty Quantification
G Aversano, JC Parra-Alvarez, BJ Isaac, ST Smith, A Coussement, ...
Proceedings of the Combustion Institute 37 (4), 4461-4469, 2019
182019
Combination of polynomial chaos and Kriging for reduced-order model of reacting flow applications
G Aversano, G D’Alessio, A Coussement, F Contino, A Parente
Results in Engineering 10, 100223, 2021
162021
Surrogate-assisted modeling and robust optimization of a micro gas turbine plant with carbon capture
S Giorgetti, D Coppitters, F Contino, WD Paepe, L Bricteux, G Aversano, ...
Journal of Engineering for Gas Turbines and Power 142 (1), 011010, 2020
152020
Advancing reacting flow simulations with data-driven models
K Zdybał, G D'Alessio, G Aversano, MR Malik, A Coussement, ...
arXiv preprint arXiv:2209.02051, 2022
132022
Mic: Multi-view image classifier using generative adversarial networks for missing data imputation
G Aversano, M Jarraya, M Marwani, I Lahouli, S Skhiri
2021 18th International Multi-Conference on Systems, Signals & Devices (SSD …, 2021
42021
Application of reducedorder models based on the combination of pca & kriging on 1d flames
G Aversano, A Parente, O Gicquel, A Coussement
Fuel, 2017
32017
Model reduction by PCA and Kriging
G Aversano, Z Li, O Gicquel, A Parente
International conference of computational methods in sciences and …, 2018
22018
PCA & Kriging for Surrogate Models
G Aversano, A Parente
22016
PCA & Kriging for model reduction
G Aversano, A Parente
Rapp. tech. The Combustion Institute, 2016
22016
SANGEA: Scalable and Attributed Network Generation
V Lemaire, Y Achenchabe, L Ody, HE Souid, G Aversano, N Posocco, ...
Asian Conference on Machine Learning, 678-693, 2024
12024
" Link prediction on CV graphs: a temporal graph neural network approach
N Farnoodian, S Nijssen, G Aversano
2022
Development of physics-based reduced-order models for reacting flow applications| Theses. fr
G Aversano
Université Paris-Saclay (ComUE), 2019
2019
Development of physics-based reduced-order models for reacting flow applications
G Aversano
Université Paris Saclay (COmUE); Université libre de Bruxelles (1970-....), 2019
2019
系统目前无法执行此操作,请稍后再试。
文章 1–20