A global reference for human genetic variation 1000 Genomes Project Consortium Nature 526 (7571), 68, 2015 | 14891* | 2015 |
A framework for variation discovery and genotyping using next-generation DNA sequencing data MA DePristo, E Banks, R Poplin, KV Garimella, JR Maguire, C Hartl, ... Nature genetics 43 (5), 491-498, 2011 | 11674 | 2011 |
Analysis of protein-coding genetic variation in 60,706 humans M Lek, KJ Karczewski, EV Minikel, KE Samocha, E Banks, T Fennell, ... Nature 536 (7616), 285-291, 2016 | 10355 | 2016 |
A map of human genome variation from population scale sequencing 1000 Genomes Project Consortium Nature 467 (7319), 1061, 2010 | 8797 | 2010 |
An integrated map of genetic variation from 1,092 human genomes 1000 Genomes Project Consortium Nature 491 (7422), 56, 2012 | 8290 | 2012 |
From FastQ data to high‐confidence variant calls: the genome analysis toolkit best practices pipeline GA Van der Auwera, MO Carneiro, C Hartl, R Poplin, G Del Angel, ... Current protocols in bioinformatics 43 (1), 11.10. 1-11.10. 33, 2013 | 5505 | 2013 |
An integrated map of structural variation in 2,504 human genomes PH Sudmant, T Rausch, EJ Gardner, RE Handsaker, A Abyzov, ... Nature 526 (7571), 75-81, 2015 | 2384 | 2015 |
Patterns and rates of exonic de novo mutations in autism spectrum disorders BM Neale, Y Kou, L Liu, A Ma’Ayan, KE Samocha, A Sabo, CF Lin, ... Nature 485 (7397), 242-245, 2012 | 2022 | 2012 |
Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning R Poplin, AV Varadarajan, K Blumer, Y Liu, MV McConnell, GS Corrado, ... Nature biomedical engineering 2 (3), 158-164, 2018 | 1563 | 2018 |
Scaling accurate genetic variant discovery to tens of thousands of samples R Poplin, V Ruano-Rubio, MA DePristo, TJ Fennell, MO Carneiro, ... BioRxiv, 201178, 2017 | 1382 | 2017 |
The genetic architecture of type 2 diabetes C Fuchsberger, J Flannick, TM Teslovich, A Mahajan, V Agarwala, ... Nature 536 (7614), 41-47, 2016 | 1250 | 2016 |
A universal SNP and small-indel variant caller using deep neural networks R Poplin, PC Chang, D Alexander, S Schwartz, T Colthurst, A Ku, ... Nature biotechnology 36 (10), 983-987, 2018 | 1090 | 2018 |
Demographic history and rare allele sharing among human populations S Gravel, BM Henn, RN Gutenkunst, AR Indap, GT Marth, AG Clark, F Yu, ... Proceedings of the National Academy of Sciences 108 (29), 11983-11988, 2011 | 709 | 2011 |
Likelihood ratios for out-of-distribution detection J Ren, PJ Liu, E Fertig, J Snoek, R Poplin, M Depristo, J Dillon, ... Advances in neural information processing systems 32, 2019 | 701 | 2019 |
Variation in genome-wide mutation rates within and between human families Nature genetics 43 (7), 712-714, 2011 | 690 | 2011 |
In silico labeling: predicting fluorescent labels in unlabeled images EM Christiansen, SJ Yang, DM Ando, A Javaherian, G Skibinski, S Lipnick, ... Cell 173 (3), 792-803. e19, 2018 | 595 | 2018 |
Loss-of-function mutations in SLC30A8 protect against type 2 diabetes J Flannick, G Thorleifsson, NL Beer, SBR Jacobs, N Grarup, NP Burtt, ... Nature genetics 46 (4), 357-363, 2014 | 540 | 2014 |
Integrating sequence and array data to create an improved 1000 Genomes Project haplotype reference panel O Delaneau, J Marchini Nature communications 5 (1), 3934, 2014 | 439 | 2014 |
Identifying viruses from metagenomic data using deep learning J Ren, K Song, C Deng, NA Ahlgren, JA Fuhrman, Y Li, X Xie, R Poplin, ... Quantitative Biology, 1-14, 2020 | 372 | 2020 |
Effect of predicted protein-truncating genetic variants on the human transcriptome MA Rivas, M Pirinen, DF Conrad, M Lek, EK Tsang, KJ Karczewski, ... Science 348 (6235), 666-669, 2015 | 345 | 2015 |