Fast context adaptation via meta-learning L Zintgraf, K Shiarli, V Kurin, K Hofmann, S Whiteson International Conference on Machine Learning, 7693-7702, 2019 | 415 | 2019 |
Deep coordination graphs W Böhmer, V Kurin, S Whiteson International Conference on Machine Learning, 980-991, 2020 | 181 | 2020 |
Minihack the planet: A sandbox for open-ended reinforcement learning research M Samvelyan, R Kirk, V Kurin, J Parker-Holder, M Jiang, E Hambro, ... arXiv preprint arXiv:2109.13202, 2021 | 80 | 2021 |
Learning from demonstration in the wild F Behbahani, K Shiarlis, X Chen, V Kurin, S Kasewa, C Stirbu, J Gomes, ... 2019 International Conference on Robotics and Automation (ICRA), 775-781, 2019 | 73 | 2019 |
My body is a cage: the role of morphology in graph-based incompatible control V Kurin, M Igl, T Rocktäschel, W Boehmer, S Whiteson arXiv preprint arXiv:2010.01856, 2020 | 66 | 2020 |
Can q-learning with graph networks learn a generalizable branching heuristic for a sat solver? V Kurin, S Godil, S Whiteson, B Catanzaro Advances in Neural Information Processing Systems 33, 9608-9621, 2020 | 63 | 2020 |
In defense of the unitary scalarization for deep multi-task learning V Kurin, A De Palma, I Kostrikov, S Whiteson, PK Mudigonda Advances in Neural Information Processing Systems 35, 12169-12183, 2022 | 62 | 2022 |
A generalist neural algorithmic learner B Ibarz, V Kurin, G Papamakarios, K Nikiforou, M Bennani, R Csordás, ... Learning on graphs conference, 2: 1-2: 23, 2022 | 57 | 2022 |
The atari grand challenge dataset V Kurin, S Nowozin, K Hofmann, L Beyer, B Leibe arXiv preprint arXiv:1705.10998, 2017 | 55 | 2017 |
Fast efficient hyperparameter tuning for policy gradient methods S Paul, V Kurin, S Whiteson Advances in Neural Information Processing Systems 32, 2019 | 44 | 2019 |
Improving SAT solver heuristics with graph networks and reinforcement learning V Kurin, S Godil, S Whiteson, B Catanzaro | 33 | 2019 |
Towards a principled integration of multi-camera re-identification and tracking through optimal bayes filters L Beyer, S Breuers, V Kurin, B Leibe Proceedings of the IEEE Conference on Computer Vision and Pattern …, 2017 | 32 | 2017 |
Fast efficient hyperparameter tuning for policy gradients S Paul, V Kurin, S Whiteson arXiv preprint arXiv:1902.06583, 2019 | 31 | 2019 |
Caml: Fast context adaptation via meta-learning LM Zintgraf, K Shiarlis, V Kurin, K Hofmann, S Whiteson | 31 | 2018 |
Insights from the neurips 2021 nethack challenge E Hambro, S Mohanty, D Babaev, M Byeon, D Chakraborty, ... NeurIPS 2021 Competitions and Demonstrations Track, 41-52, 2022 | 18 | 2022 |
You may not need ratio clipping in PPO M Sun, V Kurin, G Liu, S Devlin, T Qin, K Hofmann, S Whiteson arXiv preprint arXiv:2202.00079, 2022 | 14 | 2022 |
Snowflake: Scaling GNNs to high-dimensional continuous control via parameter freezing C Blake, V Kurin, M Igl, S Whiteson Advances in Neural Information Processing Systems 34, 23983-23992, 2021 | 12 | 2021 |
Behaviour Models for Autonomous Vehicle Simulators SA Whiteson, J Messias, X Chen, F Behbahani, K Shiarli, S Kasewa, ... US Patent App. 16/978,446, 2021 | 1 | 2021 |
A minimalist approach to deep multi-task learning V Kurin University of Oxford, 2022 | | 2022 |
AIMS CDT Project Report: Towards One-Shot Learning From Demonstration via Reinforcement Learning MN Finean, LM Zintgraf, K Shiarlis, V Kurin, S Whiteson | | |