关注
Jiayi Qu
Jiayi Qu
PhD candidate, UC Davis
在 ucdavis.edu 的电子邮件经过验证
标题
引用次数
引用次数
年份
MegaLMM: mega-scale linear mixed models for genomic predictions with thousands of traits
DE Runcie, J Qu, H Cheng, L Crawford
Genome biology 22, 1-25, 2021
622021
Exact distribution of linkage disequilibrium in the presence of mutation, selection, or minor allele frequency filtering
J Qu, SD Kachman, D Garrick, RL Fernando, H Cheng
Frontiers in genetics 11, 362, 2020
152020
A goal programming approach for balancing diet costs and feed water use under different environmental conditions
J Qu, TC Hsiao, EJ DePeters, D Zaccaria, RL Snyder, JG Fadel
Journal of dairy science 102 (12), 11504-11522, 2019
112019
JWAS version 2: leveraging biological information and highthroughput phenotypes into genomic prediction and association
H Cheng, R Fernando, D Garrick, T Zhao, J Qu
Proceedings of 12th World Congress on Genetics Applied to Livestock …, 2022
52022
Exploring a Bayesian sparse factor model-based strategy for the genetic analysis of thousands of mid-infrared spectra traits for animal breeding
Y Chen, H Atashi, J Qu, P Delhez, D Runcie, H Soyeurt, N Gengler
Journal of Dairy Science 107 (11), 9615-9627, 2024
12024
Mega-scale Bayesian regression methods for genome-wide prediction and association studies with thousands of traits
J Qu, D Runcie, H Cheng
Genetics 223 (3), iyac183, 2023
12023
Supplementary Note to “MegaLMM: Mega-scale linear mixed models for multi-trait genomic prediction”
D Runcie, J Qu, H Cheng, L Crawford
12021
Erratum to “Exploring a Bayesian sparse factor model-based strategy for the genetic analysis of thousands of mid-infrared spectra traits for animal breeding”(J. Dairy Sci. 107 …
Y Chen, H Atashi, J Qu, P Delhez, D Runcie, H Soyeurt, N Gengler
Journal of Dairy Science 107 (12), 11805-11806, 2024
2024
Mega-scale mixed models for genome-wide prediction with thousands of high-throughput phenotyping traits
J Qu, DE Runcie, H Cheng
Proceedings of 12th World Congress on Genetics Applied to Livestock …, 2022
2022
A Bayesian random regression method using mixture priors for genome‐enabled analysis of time‐series high‐throughput phenotyping data
J Qu, G Morota, H Cheng
The Plant Genome 15 (3), e20228, 2022
2022
MegaBayesianAlphabet: Mega-scale Bayesian Regression methods for genome-wide prediction and association studies with thousands of traits
J Qu, D Runcie, H Cheng
bioRxiv, 2022.05. 06.490983, 2022
2022
系统目前无法执行此操作,请稍后再试。
文章 1–11