Deep learning with convolutional neural network for objective skill evaluation in robot-assisted surgery

Z Wang, A Majewicz Fey - … journal of computer assisted radiology and …, 2018 - Springer
International journal of computer assisted radiology and surgery, 2018Springer
Purpose With the advent of robot-assisted surgery, the role of data-driven approaches to
integrate statistics and machine learning is growing rapidly with prominent interests in
objective surgical skill assessment. However, most existing work requires translating robot
motion kinematics into intermediate features or gesture segments that are expensive to
extract, lack efficiency, and require significant domain-specific knowledge. Methods We
propose an analytical deep learning framework for skill assessment in surgical training. A …
Purpose
With the advent of robot-assisted surgery, the role of data-driven approaches to integrate statistics and machine learning is growing rapidly with prominent interests in objective surgical skill assessment. However, most existing work requires translating robot motion kinematics into intermediate features or gesture segments that are expensive to extract, lack efficiency, and require significant domain-specific knowledge.
Methods
We propose an analytical deep learning framework for skill assessment in surgical training. A deep convolutional neural network is implemented to map multivariate time series data of the motion kinematics to individual skill levels.
Results
We perform experiments on the public minimally invasive surgical robotic dataset, JHU-ISI Gesture and Skill Assessment Working Set (JIGSAWS). Our proposed learning model achieved competitive accuracies of 92.5%, 95.4%, and 91.3%, in the standard training tasks: Suturing, Needle-passing, and Knot-tying, respectively. Without the need of engineered features or carefully tuned gesture segmentation, our model can successfully decode skill information from raw motion profiles via end-to-end learning. Meanwhile, the proposed model is able to reliably interpret skills within a 1–3 second window, without needing an observation of entire training trial.
Conclusion
This study highlights the potential of deep architectures for efficient online skill assessment in modern surgical training.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果