Guest editorial: special section on distributed intelligence over Internet of Things

H Chen, J Rodrigues, F Xia… - IEEE Transactions on …, 2022 - ieeexplore.ieee.org
IEEE Transactions on Industrial Informatics, 2022ieeexplore.ieee.org
N OWADAYS, billions of devices are connected to the In-ternet, enabling Internet of Things
(IoT) systems widely deployed, such as smart city, smart healthcare and intelligent plant, to
capture a great quantity of sensing data. Consequently, the data transmission, processing
and analysis in IoT applications bring a great pressure to the central server. Fortunately,
distributed intelligence becomes one of the potential solutions. Distributed intelligence can
greatly relieve server pressures via plenty of terminal devices, and these devices …
N OWADAYS, billions of devices are connected to the In-ternet, enabling Internet of Things (IoT) systems widely deployed, such as smart city, smart healthcare and intelligent plant, to capture a great quantity of sensing data. Consequently, the data transmission, processing and analysis in IoT applications bring a great pressure to the central server. Fortunately, distributed intelligence becomes one of the potential solutions. Distributed intelligence can greatly relieve server pressures via plenty of terminal devices, and these devices collaboratively perceive and handle the mass data to improve the reliability, s-calability and security of industrial IoT systems. As future IoT system will embrace more wireless sensors and devices, the high-performance computing, high-bandwidth and low-latency communication are excessively required, many new research opportunities and challenges for distributed intelligence over Internet of things have arisen. To promote the development of distributed intelligence technology, this special section (SS) focuses on various technologies and platforms regarding industrial IoT systems. This special section received nearly 50 submitted manuscripts, out of which 10 of them have been accepted after a rigorous peer review. Each manuscript is reviewed by multiple rounds of review with at least three or four reviewers, the problems to be solved and the innovation of each manuscript are mainly concerned. Then the accepted papers are summarized as follows in details. Considering the joint optimization of the offloading decision and resource allocation under limited resource constraints in collaborative edge computing networks with multiple IIoT devices and MEC servers, an improved differential evolution algorithm [7] is proposed to minimize the weighted sum of cost of energy consumption and time delay, which can effectively reduce the system delay and energy consumption. In order to improve the performance of task scheduling in cloud computing, Attiya et al. [1] propose a novel hybrid swarm intelligence method MRFOSSA, which uses a modified Manta-Ray Foraging Optimizer (MRFO) and the Salp Swarm Algorithm (SSA). MRFOSSA is superior to other methods in terms of makespan time and cloud throughput. The research goal of the paper [5] is to design an intelligent computing offloading strategy for industrial applications in order to optimize costs and mitigate energy losses. Then the paper proposes to combine a fog controller and AI-based learning techniques so that the fog controller can intelligently assign tasks to the most appropriate fog devices and find the appropriate path to the target. Considering the resource utilization efficiency under dynamic overload requests and network states in IIoT, Chen et al. [2] propose DRL-based intelligent SFC orchestration scheme and jointly optimize the VNF deployment and SFC embedment by the improved DDQN algorithm, which can improve the performance of resource utilization rate, execution cost and delay compared with other representative schemes. To solve the problem of resource allocation and energy cost in Internet of Vehicles, Kong et al. [8] design a joint computing and caching framework and formulate the problem as a reinforcement learning problem to minimize the energy cost. On this basis, the optimization algorithm based on DDPG is proposed, which can effectively decrease energy costs. To reduce the query numbers of the object model when constructing adversarial examples, Zhang et al. [10] propose generating adversarial examples with shadow model (GASM), i.e., transfering the query operations to the designed shadow model, which can achieve high attack …
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果