Nanostructured thermoelectric materials and high-efficiency power-generation modules

TP Hogan, A Downey, J Short, J D'Angelo… - Journal of Electronic …, 2007 - Springer
TP Hogan, A Downey, J Short, J D'Angelo, CI Wu, E Quarez, J Androulakis, PFP Poudeu
Journal of Electronic Materials, 2007Springer
For thermoelectric applications, the best materials have high electrical conductivity and
thermopower and, simultaneously, low thermal conductivity. Such a combination of
properties is usually found in heavily doped semiconductors. Renewed interest in this topic
has followed recent theoretical predictions that significant increases in performance are
possible for nanostructured materials, and this has been experimentally verified. During
exploratory synthetic studies of chalcogenide-based bulk thermoelectric materials it was …
Abstract
For thermoelectric applications, the best materials have high electrical conductivity and thermopower and, simultaneously, low thermal conductivity. Such a combination of properties is usually found in heavily doped semiconductors. Renewed interest in this topic has followed recent theoretical predictions that significant increases in performance are possible for nanostructured materials, and this has been experimentally verified. During exploratory synthetic studies of chalcogenide-based bulk thermoelectric materials it was discovered that several compounds spontaneously formed endotaxially embedded nanostructures. These compounds have some of the best known properties for bulk thermoelectric materials in the 500–800 K temperature range. Here we report our continued efforts to better understand the role of the nanostructures while concurrently furthering the development of these new materials (for example n-type lead–antimony–silver–tellurium, and p-type lead–antimony–silver–tin–tellurium) into thermoelectric power-generation devices.
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果