Improvement in deep networks for optimization using explainable artificial intelligence

J ha Lee, I hee Shin, S gu Jeong, SI Lee… - … on Information and …, 2019 - ieeexplore.ieee.org
J ha Lee, I hee Shin, S gu Jeong, SI Lee, MZ Zaheer, BS Seo
2019 International Conference on Information and Communication …, 2019ieeexplore.ieee.org
With the recent advancements in the field of explainable artificial intelligence (XAI), which
covers the domain of turning deep network architectures from black boxes to
comprehensible structures, it became easy to understand what goes on inside a network
when it predicts an output. Many researchers have successfully shown the 'thought process'
behind a network's decision making. This rich and interesting information has not been
utilized beyond the scope of visualizations once the training finish. In this work, a novel idea …
With the recent advancements in the field of explainable artificial intelligence (XAI), which covers the domain of turning deep network architectures from black boxes to comprehensible structures, it became easy to understand what goes on inside a network when it predicts an output. Many researchers have successfully shown the ‘thought process’ behind a network’s decision making. This rich and interesting information has not been utilized beyond the scope of visualizations once the training finish. In this work, a novel idea to utilize this insight to the network as a training parameter is proposed. Layer-wise Relevance Propagation (LRP), which obtains the effect of each neuron towards the output of the whole network, is used as a parameter, along with learning rate and network weights, to optimize the training. Various intuitive formulations have been proposed, and the results of the experiments on MNIST and CIFAR-10 datasets have been reported in this paper. Our proposed methodologies show better or comparable performances against conventional optimization algorithms. This would open a new dimension of research to explore the possibility of using XAI in optimizing the training of neural networks.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果