Cryogenic microwave-to-optical conversion using a triply resonant lithium-niobate-on-sapphire transducer

TP McKenna, JD Witmer, RN Patel, W Jiang… - Optica, 2020 - opg.optica.org
Quantum networks are likely to have a profound impact on the way we compute and
communicate in the future. In order to wire together superconducting quantum processors
over kilometer-scale distances, we need transducers that can generate entanglement
between the microwave and optical domains with high fidelity. We present an integrated
electro-optic transducer that combines low-loss lithium niobate photonics with
superconducting microwave resonators on a sapphire substrate. Our triply resonant device …
Quantum networks are likely to have a profound impact on the way we compute and communicate in the future. In order to wire together superconducting quantum processors over kilometer-scale distances, we need transducers that can generate entanglement between the microwave and optical domains with high fidelity. We present an integrated electro-optic transducer that combines low-loss lithium niobate photonics with superconducting microwave resonators on a sapphire substrate. Our triply resonant device operates in a dilution refrigerator and converts microwave photons to optical photons with an on-chip efficiency of 6.6×10^−6 and a conversion bandwidth of 20 MHz. We discuss design trade-offs in this device, including strategies to manage acoustic loss, and outline ways to increase the conversion efficiency in the future.
opg.optica.org
以上显示的是最相近的搜索结果。 查看全部搜索结果