On the number of solutions in random graph k-colouring

F Rassmann - Combinatorics, Probability and Computing, 2019 - cambridge.org
Let k⩾ 3 be a fixed integer. We exactly determine the asymptotic distribution of ln Zk (G (n,
m)), where Zk (G (n, m)) is the number of k-colourings of the random graph G (n, m). A crucial …

On the number of solutions in random graph -colouring

F Rassmann - arXiv preprint arXiv:1609.04191, 2016 - arxiv.org
Let $ k\ge 3$ be a fixed integer. We exactly determine the asymptotic distribution of $\ln Z_k
(G (n, m)) $, where $ Z_k (G (n, m)) $ is the number of $ k $-colourings of the random graph …

On the Number of Solutions in Random Graph k-Colouring.

F RASSMANN - Combinatorics, Probability & Computing, 2019 - search.ebscohost.com
Let k⩾ 3 be a fixed integer. We exactly determine the asymptotic distribution of ln Z< sub>
k(G (n, m)), where Z< sub> k(G (n, m)) is the number of k-colourings of the random graph G …

On the Number of Solutions in Random Graph k-Colouring

F Rassmann - Combinatorics, Probability & Computing, 2019 - search.proquest.com
Let k⩾ 3 be a fixed integer. We exactly determine the asymptotic distribution of ln Z k (G (n,
m)), where Z k (G (n, m)) is the number of k-colourings of the random graph G (n, m). A …

On the number of solutions in random graph -colouring

F Rassmann - arXiv e-prints, 2016 - ui.adsabs.harvard.edu
Abstract Let $ k\ge 3$ be a fixed integer. We exactly determine the asymptotic distribution of
$\ln Z_k (G (n, m)) $, where $ Z_k (G (n, m)) $ is the number of $ k $-colourings of the …