Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization

M Ye, A Barg - IEEE Transactions on Information Theory, 2017 - ieeexplore.ieee.org
An (n, k, l) maximum distance separable (MDS) array code of length n, dimension k= nr, and
subpacketization l is formed of l× n matrices over a finite field F, with every column of the …

Explicit Constructions of Optimal-Access MDS Codes With Nearly Optimal Sub-Packetization

M Ye, A Barg - IEEE Transactions on Information Theory, 2017 - dl.acm.org
An maximum distance separable (MDS) array code of length, dimension, and sub-
packetization is formed of matrices over a finite field, with every column of the matrix stored …

[引用][C] Explicit Constructions of Optimal-Access MDS Codes With Nearly Optimal Sub-Packetization

M Ye, A Barg - IEEE Transactions on Information Theory, 2017 - cir.nii.ac.jp
Explicit Constructions of Optimal-Access MDS Codes With Nearly Optimal Sub-Packetization |
CiNii Research CiNii 国立情報学研究所 学術情報ナビゲータ[サイニィ] 詳細へ移動 検索フォームへ …

Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization

M Ye, A Barg - arXiv e-prints, 2016 - ui.adsabs.harvard.edu
Abstract An $(n, k, l) $ MDS array code of length $ n, $ dimension $ k= nr $ and sub-
packetization $ l $ is formed of $ l\times n $ matrices over a finite field $ F, $ with every …

[PDF][PDF] Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization

M Ye, A Barg - ieeexplore.ieee.org
An (n, k, l) MDS array code of length n, dimension k= n− r and sub-packetization l is formed
of l× n matrices over a finite field F, with every column of the matrix stored on a separate …

Explicit constructions of optimal-access MDS codes with nearly optimal sub-packetization

M Ye, A Barg - arXiv preprint arXiv:1605.08630, 2016 - arxiv.org
An $(n, k, l) $ MDS array code of length $ n, $ dimension $ k= nr $ and sub-packetization $ l
$ is formed of $ l\times n $ matrices over a finite field $ F, $ with every column of the matrix …