On the index and dilations of completely positive semigroups

W Arveson - International Journal of Mathematics, 1999 - World Scientific
It is known that every semigroup of normal completely positive maps P={Pt: t≥ 0} of ℬ (H),
satisfying Pt (1)= 1 for every t≥ 0, has a minimal dilation to an E0 acting on ℬ (K) for some …

ON THE INDEX AND DILATIONS OF COMPLETELY POSITIVE SEMIGROUPS

W ARVESON - International Journal of Mathematics, 1999 - worldscinet.com
L: B (H)-+ B (H) in terms of natural structures associated with the generator. This includes all
unital CP semigroups acting on matrix algebras. We also show that the minimal dilation of …

On the index and dilations of completely positive semigroups

W Arveson - arXiv e-prints, 1997 - ui.adsabs.harvard.edu
It is known that every semigroup of normal completely positive maps $ P={P_t: t\geq 0} $ of $
B (H) $, satisfying $ P_t (1)= 1$ for every $ t\geq 0$, has a minimal dilation to an E_0 …

On the index and dilations of completely positive semigroups

W Arveson - arXiv preprint funct-an/9705006, 1997 - arxiv.org
It is known that every semigroup of normal completely positive maps $ P={P_t: t\geq 0} $ of $
B (H) $, satisfying $ P_t (1)= 1$ for every $ t\geq 0$, has a minimal dilation to an E_0 …

[PDF][PDF] ON THE INDEX AND DILATIONS OF COMPLETELY POSITIVE SEMIGROUPS

W Arveson - arXiv preprint funct-an/9705006, 1996 - Citeseer
It is known that every semigroup of normal completely positive maps P={Pt: t≥ 0} of B (H),
satisfying Pt (1)= 1 for every t≥ 0, has a minimal dilation to an E0-semigroup acting on B (K) …

ON THE INDEX AND DILATIONS OF COMPLETELY POSITIVE SEMIGROUPS

W Arveson - International Journal of Mathematics, 1999 - elibrary.ru
It is known that every semigroup of normal completely positive maps P={P t: t і 0} of B (H),
satisfying P t (1)= 1 for every t і 0, has a minimal dilation to an E 0-semigroups acting on B …

[PDF][PDF] ON THE INDEX AND DILATIONS OF COMPLETELY POSITIVE SEMIGROUPS

W ARVESON - International Journal of Mathematics, 1999 - isibang.ac.in
L: B {H)->• B (H) in terms of natural structures associated with the generator. This includes all
unital CP semigroups acting on matrix algebras. We also show that the minimal dilation of …

[PDF][PDF] ON THE INDEX AND DILATIONS OF COMPLETELY POSITIVE SEMIGROUPS

W Arveson - 1996 - scholar.archive.org
It is known that every semigroup of normal completely positive maps P={Pt: t≥ 0} of B (H),
satisfying Pt (1)= 1 for every t≥ 0, has a minimal dilation to an E0-semigroup acting on B (K) …

On the Index and Dilations of Completely Positive Semigroups.

W Arveson - International Journal of Mathematics, 1999 - search.ebscohost.com
It is known that every semigroup of normal completely positive maps P=(P [sub t]: t≥ 0) of B
(H), satisfying P [sub t](1)= 1 for every t≥ 0, has a minimal dilation to an E [sub 0] acting on B …

[PDF][PDF] ON THE INDEX AND DILATIONS OF COMPLETELY POSITIVE SEMIGROUPS

W Arveson - 1996 - academia.edu
It is known that every semigroup of normal completely positive maps P={Pt: t≥ 0} of B (H),
satisfying Pt (1)= 1 for every t≥ 0, has a minimal dilation to an E0-semigroup acting on B (K) …