Geometric characterization of intermittency in the parabolic Anderson model

J Gärtner, W König, S Molchanov - 2007 - projecteuclid.org
We consider the parabolic Anderson problem∂ tu= Δ u+ ξ (x) u on ℝ+× ℤ d with localized
initial condition u (0, x)= δ 0 (x) and random iid potential ξ. Under the assumption that the …

[引用][C] Geometric characterization of intermittency in the parabolic Anderson model

J Gärtner, W König, S Molchanov - Annals of Probability, 2007 - elibrary.ru
Geometric characterization of intermittency in the parabolic Anderson model КОРЗИНА ПОИСК
НАВИГАТОР ЖУРНАЛЫ КНИГИ ПАТЕНТЫ ПОИСК АВТОРЫ ОРГАНИЗАЦИИ КЛЮЧЕВЫЕ …

[引用][C] Geometric characterization of intermittency in the parabolic Anderson model.

J Gärtner, W König, S Molchanov - Annals of probability: An …, 2007 - dialnet.unirioja.es

[PDF][PDF] GEOMETRIC CHARACTERIZATION OF INTERMITTENCY IN THE PARABOLIC ANDERSON MODEL

J Gärtner, W König, S Molchanov - The Annals of Probability, 2007 - Citeseer
Geometric characterization of intermittency in the parabolic Anderson model Page 1 arXiv:math/0507585v3
[math.PR] 25 Jul 2007 The Annals of Probability 2007, Vol. 35, No. 2, 439–499 DOI: 10.1214/009117906000000764 …

GEOMETRIC CHARACTERIZATION OF INTERMITTENCY IN THE PARABOLIC ANDERSON MODEL

J GÄRTNER, W KÖNIG… - The Annals of …, 2007 - projecteuclid.org
We consider the parabolic Anderson problem∂ tu= u+ ξ (x) u on R+× Zd with localized initial
condition u (0, x)= δ0 (x) and random iid potential ξ. Under the assumption that the …

[PDF][PDF] GEOMETRIC CHARACTERIZATION OF INTERMITTENCY IN THE PARABOLIC ANDERSON MODEL

J Gärtner, W König, S Molchanov - wias-berlin.de
We consider the parabolic Anderson problem∂ tu=∆ u+ ξ (x) u on R+× Zd with localized
initial condition u (0, x)= δ0 (x) and random iid potential ξ. Under the assumption that the …

[引用][C] Geometric characterization of intermittency in the parabolic anderson model

J GÄRTNER, W KÖNIG… - Annals of …, 2007 - pascal-francis.inist.fr
Geometric characterization of intermittency in the parabolic anderson model CNRS Inist
Pascal-Francis CNRS Pascal and Francis Bibliographic Databases Simple search Advanced …

Geometric characterisation of intermittency in the parabolic Anderson model

J Gaertner, W Koenig… - arXiv Mathematics e …, 2005 - ui.adsabs.harvard.edu
We consider the parabolic Anderson problem $\partial_t u=\Delta u+\xi (x) u $ on
$\R_+\times\Z^ d $ with localized initial condition $ u (0, x)=\delta_0 (x) $ and random iid …

[PDF][PDF] GEOMETRIC CHARACTERIZATION OF INTERMITTENCY IN THE PARABOLIC ANDERSON MODEL

J Gärtner, W König, S Molchanov - The Annals of Probability, 2007 - researchgate.net
Geometric characterization of intermittency in the parabolic Anderson model Page 1 arXiv:math/0507585v3
[math.PR] 25 Jul 2007 The Annals of Probability 2007, Vol. 35, No. 2, 439–499 DOI: 10.1214/009117906000000764 …

Geometric Characterization of Intermittency in the Parabolic Anderson Model

J Gärtner, W König, S Molchanov - The Annals of Probability, 2007 - JSTOR
We consider the parabolic Anderson problem ∂_tu=Δu+ξ(x)u on \BbbR_+*\BbbZ^d with
localized initial condition u (0, x)= δ₀ (x) and random iid potential ξ. Under the assumption …