Quasi-range-compatible affine maps on large operator spaces

C de Seguins Pazzis - Linear and Multilinear Algebra, 2016 - Taylor & Francis
Let and be finite-dimensional vector spaces over an arbitrary field, and be a subset of the
space of all linear maps from to. A map is called range-compatible when it satisfies for all; it …

Quasi-range-compatible affine maps on large operator spaces

C de Seguins Pazzis - Linear and Multilinear Algebra, 2016 - ingentaconnect.com
Let and be finite-dimensional vector spaces over an arbitrary field, and be a subset of the
space of all linear maps from to. A map is called range-compatible when it satisfies for all; it …

[PDF][PDF] Quasi-range-compatible affine maps on large operator spaces

C de Seguins Pazzis - arXiv preprint arXiv:1505.02315, 2015 - researchgate.net
Let U and V be finite-dimensional vector spaces over an arbitrary field K, and S be a subset
of the space L (U, V) of all linear maps from U to V. A map F: S→ V is called range …

Quasi-range-compatible affine maps on large operator spaces

C de Seguins Pazzis - arXiv e-prints, 2015 - ui.adsabs.harvard.edu
Abstract Let $ U $ and $ V $ be finite-dimensional vector spaces over an arbitrary field, and
$\mathcal {S} $ be a subset of the space $\mathcal {L}(U, V) $ of all linear maps from $ U $ to …

Quasi-range-compatible affine maps on large operator spaces

C de Seguins Pazzis - Linear and Multilinear Algebra, 2016 - hal.science
Let $ U $ and $ V $ be finite-dimensional vector spaces over an arbitrary field, and $\mathcal
{S} $ be a subset of the space $\mathcal {L}(U, V) $ of all linear maps from $ U $ to $ V $. A …

Quasi-range-compatible affine maps on large operator spaces

CS Pazzis, C de Seguins Pazzis - HAL, 2016 - dml.mathdoc.fr
Let $ U $ and $ V $ be finite-dimensional vector spaces over an arbitrary field, and $\mathcal
{S} $ be a subset of the space $\mathcal {L}(U, V) $ of all linear maps from $ U $ to $ V $. A …

Quasi-range-compatible affine maps on large operator spaces

CS Pazzis - arXiv preprint arXiv:1505.02315, 2015 - arxiv.org
Let $ U $ and $ V $ be finite-dimensional vector spaces over an arbitrary field, and $\mathcal
{S} $ be a subset of the space $\mathcal {L}(U, V) $ of all linear maps from $ U $ to $ V $. A …