Let $ U $ and $ V $ be finite-dimensional vector spaces over an arbitrary field $\mathbb {K} $, and $\mathcal {S} $ be a linear subspace of the space $\mathcal {L}(U, V) $ of all linear …
C de Seguins Pazzis - Linear Algebra and its Applications, 2016 - hal.science
Let $ U $ and $ V $ be finite-dimensional vector spaces over an arbitrary field $\mathbb {K} $, and $\mathcal {S} $ be a linear subspace of the space $\mathcal {L}(U, V) $ of all linear …
CS Pazzis, C de Seguins Pazzis - HAL, 2016 - dml.mathdoc.fr
Let $ U $ and $ V $ be finite-dimensional vector spaces over an arbitrary field $\mathbb {K} $, and $\mathcal {S} $ be a linear subspace of the space $\mathcal {L}(U, V) $ of all linear …
C de Seguins Pazzis - Linear Algebra and its Applications, 2016 - infona.pl
Let U and V be finite-dimensional vector spaces over an arbitrary field K, and S be a linear subspace of the space L (U, V) of all linear maps from U to V. A map F: S→ V is called range …
C de Seguins Pazzis - arXiv e-prints, 2015 - ui.adsabs.harvard.edu
Abstract Let $ U $ and $ V $ be finite-dimensional vector spaces over an arbitrary field $\mathbb {K} $, and $\mathcal {S} $ be a linear subspace of the space $\mathcal {L}(U, V) …