Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure

A Logunov - Annals of Mathematics, 2018 - projecteuclid.org
Let M be a compact C^∞-smooth Riemannian manifold of dimension n, n≥3, and let
\varphi_λ=\Delta_M\varphi_λ+λ\varphi_λ=0 denote the Laplace eigenfunction on M …

Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure

A Logunov - Annals of Mathematics, 2018 - annals.math.princeton.edu
Abstract Let $\mathbb {M} $ be a compact $ C^\infty $-smooth Riemannian manifold of
dimension $ n $, $ n\geq 3$, and let $\varphi_\lambda:\Delta_M\varphi_\lambda+\lambda …

Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure

A Logunov - ANNALS OF MATHEMATICS, 2018 - JSTOR
Let 𝕄 be a compact C∞-smooth Riemannian manifold of dimension n, n≥ 3, and let 𝜑λ:
ΔM𝜑λ+ λ𝜑λ denote the Laplace eigenfunction on 𝕄 corresponding to the eigenvalue λ. We …

Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure

A Logunov - Annals of Mathematics, 2018 - hero.epa.gov
Let M be a compact C-infinity-smooth Riemannian manifold of dimension n, n>= 3, and let
phi lambda: Delta M phi lambda+ lambda phi lambda= 0 denote the Laplace eigenfunction …

Nodal sets of Laplace eigenfunctions: Polynomial upper estimates of the Hausdorff measure

A Logunov - Annals of Mathematics, 2018 - elibrary.ru
Let M be a compact C∞-smooth Riemannian manifold of dimension n, n≥ 3, and let ψλ:
ΔMψλ+ λψλ= 0 denote the Laplace eigenfunction on M corresponding to the eigenvalue λ …

Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure

A Logunov - Annals of Mathematics, 2018 - projecteuclid.org
Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure
Page 1 Annals of Mathematics 187 (2018), 221–239 https://doi.org/10.4007/annals.2018.187.1.4 …

Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure

A Logunov - arXiv e-prints, 2016 - ui.adsabs.harvard.edu
Abstract Let $\mathbb {M} $ be a compact $ C^\infty $-smooth Riemannian manifold of
dimension $ n $, $ n\geq 3$, and let $\varphi_\lambda:\Delta_M\varphi_\lambda+\lambda …

Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure

A Logunov - arXiv preprint arXiv:1605.02587, 2016 - arxiv.org
Let $\mathbb {M} $ be a compact $ C^\infty $-smooth Riemannian manifold of dimension $ n
$, $ n\geq 3$, and let $\varphi_\lambda:\Delta_M\varphi_\lambda+\lambda\varphi_\lambda …

Nodal sets of Laplace eigenfunctions: Polynomial upper estimates of the Hausdorff measure

A Logunov - Annals of Mathematics, 2018 - collaborate.princeton.edu
Let M be a compact C∞-smooth Riemannian manifold of dimension n, n≥ 3, and let ψλ:
ΔMψλ+ λψλ= 0 denote the Laplace eigenfunction on M corresponding to the eigenvalue λ …

[PDF][PDF] NODAL SETS OF LAPLACE EIGENFUNCTIONS: POLYNOMIAL UPPER ESTIMATES OF THE HAUSDORFF MEASURE.

A LOGUNOV - arXiv preprint arXiv:1605.02587, 2016 - sites.math.washington.edu
arXiv:1605.02587v1 [math.AP] 9 May 2016 Page 1 arXiv:1605.02587v1 [math.AP] 9 May
2016 NODAL SETS OF LAPLACE EIGENFUNCTIONS: POLYNOMIAL UPPER ESTIMATES …