A Logunov - Annals of Mathematics, 2018 - annals.math.princeton.edu
Abstract Let $\mathbb {M} $ be a compact $ C^\infty $-smooth Riemannian manifold of dimension $ n $, $ n\geq 3$, and let $\varphi_\lambda:\Delta_M\varphi_\lambda+\lambda …
Let 𝕄 be a compact C∞-smooth Riemannian manifold of dimension n, n≥ 3, and let 𝜑λ: ΔM𝜑λ+ λ𝜑λ denote the Laplace eigenfunction on 𝕄 corresponding to the eigenvalue λ. We …
A Logunov - Annals of Mathematics, 2018 - hero.epa.gov
Let M be a compact C-infinity-smooth Riemannian manifold of dimension n, n>= 3, and let phi lambda: Delta M phi lambda+ lambda phi lambda= 0 denote the Laplace eigenfunction …
A Logunov - Annals of Mathematics, 2018 - elibrary.ru
Let M be a compact C∞-smooth Riemannian manifold of dimension n, n≥ 3, and let ψλ: ΔMψλ+ λψλ= 0 denote the Laplace eigenfunction on M corresponding to the eigenvalue λ …
A Logunov - arXiv e-prints, 2016 - ui.adsabs.harvard.edu
Abstract Let $\mathbb {M} $ be a compact $ C^\infty $-smooth Riemannian manifold of dimension $ n $, $ n\geq 3$, and let $\varphi_\lambda:\Delta_M\varphi_\lambda+\lambda …
A Logunov - arXiv preprint arXiv:1605.02587, 2016 - arxiv.org
Let $\mathbb {M} $ be a compact $ C^\infty $-smooth Riemannian manifold of dimension $ n $, $ n\geq 3$, and let $\varphi_\lambda:\Delta_M\varphi_\lambda+\lambda\varphi_\lambda …
A Logunov - Annals of Mathematics, 2018 - collaborate.princeton.edu
Let M be a compact C∞-smooth Riemannian manifold of dimension n, n≥ 3, and let ψλ: ΔMψλ+ λψλ= 0 denote the Laplace eigenfunction on M corresponding to the eigenvalue λ …