A DFT, TDDFT and QTAIM study of the acridine pincer ligand-based Ru (II) and Rh (III) complexes: detailed analysis of the metal-F bonding

GN Pallewela, RPA Bettens - Chemical Papers, 2023 - Springer
GN Pallewela, RPA Bettens
Chemical Papers, 2023Springer
A series of acridine-based PNP and PNF pincer containing Ru and Rh transition metal
complexes have been explored. A theoretical investigation has been performed to examine
the electronic structure, absorption and possible remote interaction of the fluorine atom
connected to the acridine ligand with the metal centre employing DFT and TDDFT
calculation. Bader's Atoms in Molecules Theory is additionally applied for the studied
complexes to evaluate the bonding nature between metal and F. For all the studied …
Abstract
A series of acridine-based PNP and PNF pincer containing Ru and Rh transition metal complexes have been explored. A theoretical investigation has been performed to examine the electronic structure, absorption and possible remote interaction of the fluorine atom connected to the acridine ligand with the metal centre employing DFT and TDDFT calculation. Bader’s Atoms in Molecules Theory is additionally applied for the studied complexes to evaluate the bonding nature between metal and F. For all the studied complexes, the LUMOs mainly consist of the acridine π* orbitals. HOMOs primarily consist of metal d orbitals. On that account, a metal-to-ligand charge transfer transition is possible in these complexes. The analysis of UV–Vis absorption spectra demonstrates how attached ligands affect electronic transitions. All of the complexes display two main transitions. The lowest energy band is due to the HOMO–LUMO MLCT transition between metal d orbitals and acridine π* orbitals. The topological analysis demonstrates a strong interaction between the metal atom and the F atom. Even so, positive Laplacian of electron density observed at the bond critical point between metal and F denied the possibility of covalent-type interaction.
Graphical abstract
Springer
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References