In this work, a simple and efficient CAD (computer‐aided diagnostic) system is proposed for tumor detection from brain magnetic resonance imaging (MRI). Poor contrast MR images are preprocessed by using morphological operations and DSR (dynamic stochastic resonance) technique. The appropriate segmentation of MR images plays an important role in yielding the correct detection of tumor. On examination of three views of brain MRI, it was visible that the region of interest (ROI) lies in the middle and its size ranges from 240 × 240 mm2 to 280 × 280 mm2. The proposed system makes effective use of this information and identifies four blocks from the desired ROI through block‐based segmentation. Texture and shape features are extracted for each block of all MRIs in the training set. The range of these feature values defines the threshold to distinguish tumorous and nontumorous MRIs. Features of each block of an MRI view are checked against the threshold. For a particular feature, if a block is found tumorous in a view, then the other views are also checked for the presence of tumor. If corresponding blocks in all the views are found to be tumorous, then the MRI is classified as tumorous. This selective block processing technique improves computational efficiency of the system. The proposed technique is well adaptive and fast, and it is compared with well‐known existing techniques, like k‐means, fuzzy c‐means, etc. The performance analysis based on accuracy and precision parameters emphasizes the effectiveness and efficiency of the proposed work.