A Low-Cost Scalable 32-Element 28-GHz Phased Array Transceiver for 5G Communication Links Based on a Beamformer Flip-Chip Unit Cell

K Kibaroglu, M Sayginer… - IEEE Journal of Solid …, 2018 - ieeexplore.ieee.org
IEEE Journal of Solid-State Circuits, 2018ieeexplore.ieee.org
This paper presents a scalable 28-GHz phased-array architecture suitable for fifth-
generation (5G) communication links based on four-channel (2× 2) transmit/receive (TRX)
quadcore chips in SiGe BiCMOS with flip-chip packaging. Each channel of the quad-core
beamformer chip has 4.6-dB noise figure (NF) in the receive (RX) mode and 10.5-dBm
output 1-dB compression point (OP1dB) in the transmit (TX) mode with 6-bit phase control
and 14-dB gain control. The phase change with gain control is only±3°, allowing …
This paper presents a scalable 28-GHz phased-array architecture suitable for fifth-generation (5G) communication links based on four-channel (2×2) transmit/receive (TRX) quadcore chips in SiGe BiCMOS with flip-chip packaging. Each channel of the quad-core beamformer chip has 4.6-dB noise figure (NF) in the receive (RX) mode and 10.5-dBm output 1-dB compression point (OP1dB) in the transmit (TX) mode with 6-bit phase control and 14-dB gain control. The phase change with gain control is only ±3°, allowing orthogonality between the variable gain amplifier and the phase shifter. The chip has high RX linearity (IP1dB = -22 dBm/channel) and consumes 130 mW in the RX mode and 200 mW in the TX mode at P1dB per channel. Advantages of the scalable all-RF beamforming architecture and circuit design techniques are discussed in detail. 4and 32-element phased-arrays are demonstrated with detailed data link measurements using a single or eight of the fourchannel TRX core chips on a low-cost printed circuit board with microstrip antennas. The 32-element array achieves an effective isotropic radiated power (EIRP) of 43 dBm at P1dB, a 45-dBm saturated EIRP, and a record-level system NF of 5.2 dB when the beamformer loss and transceiver NF are taken into account and can scan to ±50° in azimuth and ±25° in elevation with <; -12-dB sidelobes and without any phase or amplitude calibration. A wireless link is demonstrated using two 32-element phased-arrays with a state-of-the-art data rate of 1.0-1.6 Gb/s in a single beam using 16-QAM waveforms over all scan angles at a link distance of 300 m.
ieeexplore.ieee.org
以上显示的是最相近的搜索结果。 查看全部搜索结果

Google学术搜索按钮

example.edu/paper.pdf
搜索
获取 PDF 文件
引用
References